ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We forced a global terrestrial carbon cycle model by climate fields of 14 ocean and atmosphere general circulation models (OAGCMs) to simulate the response of terrestrial carbon pools and fluxes to climate change over the next century. These models participated in the second phase of the Coupled Model Intercomparison Project (CMIP2), where a 1% per year increase of atmospheric CO2 was prescribed. We obtain a reduction in net land uptake because of climate change ranging between 1.4 and 5.7 Gt C yr−1 at the time of atmospheric CO2 doubling. Such a reduction in terrestrial carbon sinks is largely dominated by the response of tropical ecosystems, where soil water stress occurs. The uncertainty in the simulated land carbon cycle response is the consequence of discrepancies in land temperature and precipitation changes simulated by the OAGCMs. We use a statistical approach to assess the coherence of the land carbon fluxes response to climate change. The biospheric carbon fluxes and pools changes have a coherent response in the tropics, in the Mediterranean region and in high latitudes of the Northern Hemisphere. This is because of a good coherence of soil water content change in the first two regions and of temperature change in the high latitudes of the Northern Hemisphere.Then we evaluate the carbon uptake uncertainties to the assumptions on plant productivity sensitivity to atmospheric CO2 and on decomposition rate sensitivity to temperature. We show that these uncertainties are on the same order of magnitude than the uncertainty because of climate change. Finally, we find that the OAGCMs having the largest climate sensitivities to CO2 are the ones with the largest soil drying in the tropics, and therefore with the largest reduction of carbon uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Process-based models can be classified into: (a) terrestrial biogeochemical models (TBMs), which simulate fluxes of carbon, water and nitrogen coupled within terrestrial ecosystems, and (b) dynamic global vegetation models (DGVMs), which further couple these processes interactively with changes in slow ecosystem processes depending on resource competition, establishment, growth and mortality of different vegetation types. In this study, four models – RHESSys, GOTILWA+, LPJ-GUESS and ORCHIDEE – representing both modelling approaches were compared and evaluated against benchmarks provided by eddy-covariance measurements of carbon and water fluxes at 15 forest sites within the EUROFLUX project. Overall, model-measurement agreement varied greatly among sites. Both modelling approaches have somewhat different strengths, but there was no model among those tested that universally performed well on the two variables evaluated. Small biases and errors suggest that ORCHIDEE and GOTILWA+ performed better in simulating carbon fluxes while LPJ-GUESS and RHESSys did a better job in simulating water fluxes. In general, the models can be considered as useful tools for studies of climate change impacts on carbon and water cycling in forests. However, the various sources of variation among models simulations and between models simulations and observed data described in this study place some constraints on the results and to some extent reduce their reliability. For example, at most sites in the Mediterranean region all models generally performed poorly most likely because of problems in the representation of water stress effects on both carbon uptake by photosynthesis and carbon release by heterotrophic respiration (Rh).The use of flux data as a means of assessing key processes in models of this type is an important approach to improving model performance. Our results show that the models have value but that further model development is necessary with regard to the representation of the some of the key ecosystem processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...