ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-06-01
    Print ISSN: 0266-0032
    Electronic ISSN: 1475-2743
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley on behalf of British Society of Soil Science.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 446 (2007), S. 727-728 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ...Across the Northern Hemisphere spring is creeping northwards. On the trees the buds are bursting, their leaves unfolding to luxuriate in an atmosphere more enriched in carbon dioxide than at any time in the previous 650,000 years. In the next few months, global CO2 concentrations will ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 433 (2005), S. 57-59 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Our understanding of the relationship between the decomposition of soil organic matter (SOM) and soil temperature affects our predictions of the impact of climate change on soil-stored carbon. One current opinion is that the decomposition of soil labile carbon is sensitive to temperature ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 381 (1996), S. 15-15 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - One of the more extreme suggested solutions to the UK bovine spongiform encephalopathy (BSE) crisis is to move all cattle to new pasture after eradication of the disease. Although there may be little scientific basis for such an exercise, political pressure to take radical steps to restore ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: All current mathematical models of the soil system are underpinned by a wealth of research into soil biology and new research continues to improve the description of the real world by mathematical models. In this review we examine the various approaches for describing soil biology in mathematical models and discuss the use of each type of model in global change research. The approaches represented among models participating in the Global Change and Terrestrial Ecosystems (GCTE) Soil Organic Matter Network (SOMNET) are described. We examine the relative advantages and constraints of each modelling approach and, using these, suggest appropriate uses of each. We show that for predictive purposes at ecosystem scale and higher, process-orientated models (which have only an implicit description of soil organisms) are most commonly used. As a research tool at the ecosystem level, both process-orientated and organism-orientated models (in which functional or taxonomic groups of soil organisms are explicitly described) are commonly used. Because of uncertainties introduced in internal model parameter estimation and system feedbacks, the predictive use of organism-orientated models at the ecosystem scale and larger is currently less feasible than is the use of process-orientated models. In some specific circumstances, however, an explicit description of some functional groups of soil organisms within models may be required to adequately describe the effects of global change. No existing models can adequately predict the feedback between global change, a change in soil community function, and the response of the changed system to future global change. To find out if these feedbacks exist and to what extent they affect future global change, more research is urgently required into the response of soil community function to global change and its potential ecosystem-level effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw ( 15 Tg C y–1), but greater potential through extensification of agriculture (≈ 40 Tg C y–1) or through the afforestation of surplus arable land (≈ 50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008–2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use/land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article 3.3 of the Kyoto Protocol) and the improved management of agricultural soils (article 3.4). In this paper, we estimate the carbon mitigation potential of various agricultural land-management strategies and examine the consequences of European policy options on carbon mitigation potential, by examining combinations of changes in agricultural land-use/land-management. We show that no single land-management change in isolation can mitigate all of the carbon needed to meet Europe's climate change commitments, but integrated combinations of land-management strategies show considerable potential for carbon mitigation. Three of the combined scenarios, one of which is an optimal realistic scenario, are by themselves able to meet Europe's emission limitation or reduction commitments. Through combined land-management scenarios, we show that the most important resource for carbon mitigation in agriculture is the surplus arable land. We conclude that in order to fully exploit the potential of arable land for carbon mitigation, policies will need to be implemented to allow surplus arable land to be put into alternative long-term land-use. Of all options examined, bioenergy crops show the greatest potential for carbon mitigation. Bioenergy crop production also shows an indefinite mitigation potential compared to other options where the mitigation potential is finite. We suggest that in order to exploit fully the bioenergy option, the infrastructure for bioenergy production needs to be significantly enhanced before the beginning of the first Kyoto commitment period in 2008. It is not expected that Europe will attempt to meet its climate change commitments solely through changes in agricultural land-use. A reduction in CO2-carbon emissions will be key to meeting Europe's Kyoto targets, and forestry activities (Kyoto Article 3.3) will play a major role. In this study, however, we demonstrate the considerable potential of changes in agricultural land-use and -management (Kyoto Article 3.4) for carbon mitigation and highlight the policies needed to promote these agricultural activities. As all sources of carbon mitigation will be important in meeting Europe's climate change commitments, agricultural carbon mitigation options should be taken very seriously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: When planning sampling in an experiment where soil organic carbon (SOC) content is expected to change, it is necessary to know how many samples will need to be taken to demonstrate a change in SOC and after how long this change will be detectable. Much has been published on the number of samples required to demonstrate the minimum detectable difference in SOC, but less on how long it takes for this change to be detectable. In this paper, a model of SOC dynamics is used to estimate the minimum time taken for a change in total SOC content to become measurable under different carbon inputs, land uses and soil types.For free air carbon dioxide enrichment (FACE), and other experiments in which SOC is expected to increase, relationships between the percentage change in C inputs and the time taken to measure a change in SOC are presented, for two levels of sampling intensity corresponding to the maximum that is practically possible in most experiments (∼100 samples) and that used regularly in field experiments (10–20 samples).In FACE experiments, where C inputs increase by a maximum of about 20–25%, SOC change could be detected with 90% confidence after about 6–10 years if a sampling regime allowing 3% change in background SOC level (probably requiring a very large number of samples) were used, but could not be detected at all if a sampling regime were used that allowed only a 15% change in background SOC to be detected. If increases in C inputs are much below 15%, it might not be possible to detect a change in soil C without an enormous number of samples. Relationships between the change in C inputs and the time taken to measure a change in SOC are robust over a range of soil types and land uses.The results demonstrate how models of SOC dynamics can be used to complement statistical power analyses for planning when, and how intensively, to sample soils during experiments. An advantage of the modelling approach demonstrated here is that estimates of the minimum time taken for a change in soil carbon to become detectable can be made, even before any detailed soil samples are taken, simply from estimates of the likely increase in carbon inputs to the soil (via expected changes in net primary production).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The current Intergovernmental Panel on Climate Change (IPCC) default methodology (tier 1) for calculating nitrous oxide (N2O) emissions from nitrogen applied to agricultural soils takes no account of either crop type or climatic conditions. As a result, the methodology omits factors that are crucial in determining current emissions, and has no mechanism to assess the potential impact of future climate and land-use change. Scotland is used as a case study to illustrate the development of a new methodology, which retains the simple structure of the IPCC tier 1 methodology, but incorporates crop- and climate-dependent emission factors (EFs). It also includes a factor to account for the effect of soil compaction because of trampling by grazing animals. These factors are based on recent field studies in Scotland and elsewhere in the UK. Under current conditions, the new methodology produces significantly higher estimates of annual N2O emissions than the IPCC default methodology, almost entirely because of the increased contribution of grazed pasture. Total emissions from applied fertilizer and N deposited by grazing animals are estimated at 10 662 t N2O-N yr−1 using the newly derived EFs, as opposed to 6 796 t N2O-N yr−1 using the IPCC default EFs. On a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling than to estimates made using the IPCC default methodology. This can be illustrated by parts of the western Ayrshire basin, which have previously been calculated to emit 8–9 kg N2O-N ha−1 yr−1 and are estimated here as 6.25–8.75 kg N2O-N ha−1 yr−1, while the IPCC default methodology gives a maximum emission level of only 3.75 kg N2O-N ha−1 yr−1 for the whole area. The new methodology is also applied in conjunction with scenarios for future climate- and land-use patterns, to assess how these emissions may change in the future. The results suggest that by 2080, Scottish N2O emissions may increase by up to 14%, depending on the climate scenario, if fertilizer and land management practices remain unchanged. Reductions in agricultural land use, however, have the potential to mitigate these increases and, depending on the replacement land use, may even reduce emissions to below current levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: In this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–1 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...