ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Neurosciences. ; Physiology. ; Neurochemistry. ; Respiratory organs Diseases. ; Neuroscience. ; Physiology. ; Neurochemistry. ; Pneumology.
    Description / Table of Contents: Pulmonary sensory receptors -- The pulmonary NEB ME is a complex intraepithelial unit -- Studying the pulmonary NEB ME: a multidisciplinary approach -- Functional exploration of the pulmonary NEB ME -- Concluding remarks and future perspectives -- References -- ADDENDUM.
    Abstract: This monograph sheds new light on pulmonary sensory receptors. Diving into the pulmonary microenvironment, the book focuses on the role of pulmonary neuroepithelial bodies (NEBs) as potential receptors and effectors, able to store and release neurotransmitters. It explores NEBs as potential stem cell niche and highlights the multidisciplinary approach taken to identify and study NEBs, including functional morphological investigation, live cell imaging, genetic models, and laser microdissection combined with gene expression analysis. Complexly organized NEBs are an integral part of the intrapulmonary airway epithelium of all air-breathing vertebrates. For decades a quest has been going on to unravel the functional significance of these intriguing structures that appear to be modified in the course of many pulmonary diseases. The NEB microenvironment (ME) is composed of organoid clusters of pulmonary neuroendocrine cells (PNECs) that are able to store and release neurotransmitters and are closely contacted by extensive nerve terminals, emphasizing a potential receptor/effector role and probable signalling to the central nervous system. PNECs are largely shielded from the airway lumen by a special type of Clara cells, the Clara-like cells, with potential stem cell characteristics. So far, functional studies of the pulmonary NEB ME revealed that PNECs can be activated by various mechanical and chemical stimuli, resulting in a calcium-mediated release of neurotransmitters. In the past decades, a number of publications have exposed NEBs as potential hypoxia sensors. Recent experimental evidence unveiled that the NEB ME is a quiescent stem cell niche in healthy postnatal lungs, and silencing may involve bone morphogenetic protein signalling mediated by vagal afferents. Only an integrated approach that takes all current information into account will be able to explain the full role of the pulmonary NEB ME in health and disease. This highly informative and carefully presented book, provides insights for researchers, PhD students with an interest in (bio)medical and veterinary science, especially in the field of the autonomic innervation of the lung, chemo-and mechanoreceptors.
    Type of Medium: Online Resource
    Pages: XVIII, 95 p. 22 illus., 21 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030658175
    Series Statement: Advances in Anatomy, Embryology and Cell Biology, 233
    DDC: 612.8
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The distribution of nitric oxide synthase (NOS), an enzyme involved in the synthesis of the presumed non-adrenergic noncholinergic inhibitory neurotransmitter nitric oxide (NO), was demonstrated in the enteric nervous system of the porcine caecum, colon and rectum. Techniques used were NOS-immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-histochemistry. Throughout the entire large intestine, NOS-immunoreactive (IR) and NADPHd-positive neurons were abundant in the myenteric and outer submucous plexus. In the inner submucous plexus, only a small number of positive neurons were found in the caecum and colon, while a moderate number was observed in the rectum. The nitrergic neurons in the porcine enteric nerve plexuses were of a range of sizes and shapes, with a small proportion showing immunostaining for vasoactive intestinal polypeptide. Varicose and non-varicose NOS-IR and NADPHd-positive nerve fibres were present in the ganglia and connecting strands of all three plexuses. Nerve fibres were also numerous in the circular muscle layer, scarce in the longitudinal muscle coat and negligible in the mucosal region. The abundance of NOS/NADPHd in the intrinsic innervation of the caecum, colon and rectum of the pig implicates NO as an important neuronal messenger in these regions of the gastrointestinal tract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The intramural projections of nerve cells containing serotonin (5-HT), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and nitric oxide synthase or reduced nicotinamide adenine dinucleotide phosphate diaphorase (NOS/NADPHd) were studied in the ascending colon of 5- to 6-week-old pigs by means of immunocytochemistry and histochemistry in combination with myectomy experiments. In control tissue of untreated animals, positive nerve cells and fibres were common in the myenteric and outer submucous plexus and, except for 5-HT-positive perikarya, immunoreactive cell bodies and fibres were also observed in the inner submucous plexus. VIP- and NOS/NADPHd-positive nerve fibres occurred in the ciruclar muscle layer while VIP was also abundant in nerve fibres of the mucosal layer. 5-HT- and CGRP-positive nerve fibres were virtually absent from the aganglionic nerve networks. In the submucosal layer, numerous paravascular CGRP-immunoreactive (IR) nerve fibres were encountered. Myectomy studies revealed that 5-HT-, CGRP-, VIP- and NOS/NADPHd-positive myenteric neurons all displayed anal projections within the myenteric plexus. In addition, some of the serotonergic myenteric neurons projected anally to the outer submucous plexus, whereas a great number of the VIP-ergic and nitrergic myenteric neurons send their axons towards the circular muscle layer. The possible function of these nerve cells in descending nerve pathways in the porcine colon is discussed in relation to the distribution pattern of their perikarya and processes and some of their morphological characteristics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Double-labelling immunofluorescence was used to investigate the coexistence of the catecholamine-synthesising enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase and several neuropeptides including neuropeptide Y, vasoactive intestinal polypeptide, Leu5-enkephalin, somatostatin, calcitonin gene-related peptide and substance P in nerve fibres supplying the vas deferens in juvenile and adult pigs. The study has revealed three major populations of nerve terminals innervating the organ: (1) noradrenergic fibres; (2) non-noradrenergic (putative cholinergic) fibres containing vasoactive intestinal polypeptide, neuropeptide Y and somatostatin, supplying almost exclusively the lamina propria; and (3) non-noradrenergic, presumably sensory fibres, containing calcitonin gene-related peptide and substance P. The population of noradrenergic nerves can be divided into three subpopulations: a somatostatin-containing, a Leu5-enkephalin-containing and a subpopulation immunonegative to the peptides investigated, in descending order of magnitude. Coexistence patterns of the substances existing within nerve fibres supplying the vas deferens blood vessels are clearly different from those found in nerve fibres innervating the organ wall. The majority of the noradrenergic fibres associated with blood vessels contain neuropeptide Y only, while non-noradrenergic perivascular nerves contain predominantly vasoactive intestinal polypeptide. The possibility of different sources of origin of the particular nerve fibre subpopulations supplying the porcine vas deferens and its blood vessels is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Immunohistochemical studies have been performed to investigate the occurrence and coexistence of two catecholamine-synthesising enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase, and several neuropeptides, including neuropeptide Y, vasoactive intestinal polypeptide, Leu5-enkephalin, somatostatin, calcitonin gene-related peptide and substance P, in nerve fibres supplying porcine accessory genital glands, the seminal vesicles, prostate (body and the disseminated part) and bulbourethral glands. Three major populations of nerve fibres supplying non-vascular elements of the glands have been distinguished (from the largest to the smallest one): (1) noradrenergic fibres, the majority of which contain Leu5-enkephalin, neuropeptide Y or, to a lesser extent, somatostatin, (2) non-noradrenergic, putative cholinergic fibres containing vasoactive intestinal polypeptide, neuropeptide Y and/or somatostatin and, (3) non-noradrenergic, presumably sensory fibres, containing calcitonin gene-related peptide and substance P. Whilst the coexistence patterns within nerves supplying particular glands are similar, the density of innervation varies between the organs. The innervation of the seminal vesicles and prostatic body is more developed than that of the disseminated part of the prostate and bulbourethral glands. The majority of noradrenergic fibres related to blood vessels contain neuropeptide Y only, while the non-noradrenergic nerves contain mainly vasoactive intestinal polypeptide. The possible function and origin of particular nerve fibre populations are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Neuron-specific enolase ; S-100 protein ; Enteric nervous system ; Small intestine ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The morphological and topographical features of the intramural enteric nervous system in the small intestine of the pig has been studied on whole mounts by means of neuron-specific enolase (NSE) and S-100 protein immu-nohistochemistry. A clear visualization of the myenteric plexus allows the recognition of its characteristic morphology, including the thin tertiary plexus coursing within the smooth muscle layers. In the tela submucosa two ganglionated plexuses, each with its own specific characteristics, can clearly be demonstrated: (1) the plexus submucosus externus (Schabadasch) located near the inner surface of the circular muscle layer at the abluminal side of the submucosal vascular arcades, and (2) the plexus submucosus internus (Meissner) close to the outer surface of the lamina muscularis mucosae at the luminal side of the submucosal vascular arcades. Due to the possibility to trace clearly the perivascular plexuses of these vascular arcades by use of immunohistochemical techniques with antibodies to NSE and S-100 protein, the two submucosal nerve plexuses can be demonstrated with exceptional clarity. This is the first report of an investigation of the intramural nerve plexuses of the small intestine of the pig using the NSE and S-100 immunostaining methods, which is sufficiently detailed to substantiate the characteristic topography and structure of the two submucosal plexuses and their relation to the smooth muscle layers and perivascular plexuses. The level of NSE immunoreactivity for enteric neurons displays great variation, a substantial proportion of the type-II neurons appearing strongly stained. Although little is known of the specific function of these enzymes, proposals are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Vas deferens ; Seminal vesicle ; Neuopeptides ; Tyrosine hydroxylase ; Caudal mesenteric ganglion ; Retrograde tracing ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY-), TH+/NPY+, TH-/NPY-, TH-/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Key words: Vas deferens ; Seminal vesicle ; Neuropeptides ; Tyrosine hydroxylase ; Caudal mesenteric ganglion ; Retrograde tracing ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY−), TH+/NPY+, TH−/NPY−, TH−/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1059-910X
    Keywords: Nitric oxide ; NADPH diaphorase ; Immunocytochemistry ; Retrograde tracing ; Prevertebral ganglion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The distribution of neurons that are capable of synthesizing nitric oxide (NO) has been demonstrated in the porcine large intestine by means of NO synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. An overall colocalization of NOS immunoreactivity and NADPHd staining was observed. Nitrergic neurons were abundant in the myenteric and outer submucous plexus of the caecum, colon, and rectum. Only a few nitrergic perikarya were seen in the inner submucous plexus of the colon and caecum, whereas a substantially larger number was observed in the rectum. Nitrergic nerve fibers were present in the three ganglionic nerve plexuses. Contrary to the outer longitudinal muscle layer and the mucosal region, the circular muscle layer received a dense nitrergic innervation. The nitrergic nerve cells were variable in size and shape, and several displayed vasoactive intestinal polypeptide (VIP) immunoreactivity (IR). Retrograde tracing studies revealed the existence of nitrergic neurons that project to the caudal (inferior) mesenteric ganglion. They were observed in the myenteric and outer submucous plexus of the transverse and descending colon and the rectum. These observations strongly suggest that several subpopulations of NO-synthesizing neurons, namely, motor neurons and interneurons, should be distinguished in the porcine large intestine, thereby emphasizing the importance of NO as a biologically active mediator. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...