ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-18
    Description: Global trends in carbon sinks and their relationships with CO 2 and temperature Global trends in carbon sinks and their relationships with CO〈sub〉2〈/sub〉 and temperature, Published online: 17 December 2018; doi:10.1038/s41558-018-0367-7 Global net ecosystem production (NEP) from a number of atmospheric inversions and dynamic global vegetation models is analysed to attribute trends to potential drivers. CO2 is found to have a positive effect on NEP that is constrained by climate warming.
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-07
    Description: Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2009-04-28
    Description: Plant photosynthesis tends to increase with irradiance. However, recent theoretical and observational studies have demonstrated that photosynthesis is also more efficient under diffuse light conditions. Changes in cloud cover or atmospheric aerosol loadings, arising from either volcanic or anthropogenic emissions, alter both the total photosynthetically active radiation reaching the surface and the fraction of this radiation that is diffuse, with uncertain overall effects on global plant productivity and the land carbon sink. Here we estimate the impact of variations in diffuse fraction on the land carbon sink using a global model modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We estimate that variations in diffuse fraction, associated largely with the 'global dimming' period, enhanced the land carbon sink by approximately one-quarter between 1960 and 1999. However, under a climate mitigation scenario for the twenty-first century in which sulphate aerosols decline before atmospheric CO(2) is stabilized, this 'diffuse-radiation' fertilization effect declines rapidly to near zero by the end of the twenty-first century.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mercado, Lina M -- Bellouin, Nicolas -- Sitch, Stephen -- Boucher, Olivier -- Huntingford, Chris -- Wild, Martin -- Cox, Peter M -- England -- Nature. 2009 Apr 23;458(7241):1014-7. doi: 10.1038/nature07949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK. lmme@ceh.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396143" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols/analysis/chemistry ; Atmosphere/*chemistry ; Carbon/*metabolism ; Carbon Dioxide/analysis ; *Darkness ; *Ecosystem ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Photosynthesis/*radiation effects ; Plants/metabolism/*radiation effects ; Sulfates/metabolism ; *Sunlight ; Volcanic Eruptions
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-04-28
    Description: Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piao, Shilong -- Fang, Jingyun -- Ciais, Philippe -- Peylin, Philippe -- Huang, Yao -- Sitch, Stephen -- Wang, Tao -- England -- Nature. 2009 Apr 23;458(7241):1009-13. doi: 10.1038/nature07944.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China. slpiao@pku.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396142" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Carbon/analysis/*metabolism ; Carbon Dioxide/analysis/chemistry/metabolism ; China ; *Ecosystem ; Forestry/history ; Fossil Fuels/*history ; History, 20th Century ; Soil/analysis ; Trees/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-19
    Description: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 +/- 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 +/- 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 +/- 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 +/- 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 +/- 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Yude -- Birdsey, Richard A -- Fang, Jingyun -- Houghton, Richard -- Kauppi, Pekka E -- Kurz, Werner A -- Phillips, Oliver L -- Shvidenko, Anatoly -- Lewis, Simon L -- Canadell, Josep G -- Ciais, Philippe -- Jackson, Robert B -- Pacala, Stephen W -- McGuire, A David -- Piao, Shilong -- Rautiainen, Aapo -- Sitch, Stephen -- Hayes, Daniel -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):988-93. doi: 10.1126/science.1201609. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture Forest Service, Newtown Square, PA 19073, USA. ypan@fs.fed.us〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764754" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis ; Carbon Dioxide/analysis ; *Carbon Sequestration ; Climate Change ; Conservation of Natural Resources ; *Ecosystem ; *Trees ; Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-10-29
    Description: Global change will alter the supply of ecosystem services that are vital for human well-being. To investigate ecosystem service supply during the 21st century, we used a range of ecosystem models and scenarios of climate and land-use change to conduct a Europe-wide assessment. Large changes in climate and land use typically resulted in large changes in ecosystem service supply. Some of these trends may be positive (for example, increases in forest area and productivity) or offer opportunities (for example, "surplus land" for agricultural extensification and bioenergy production). However, many changes increase vulnerability as a result of a decreasing supply of ecosystem services (for example, declining soil fertility, declining water availability, increasing risk of forest fires), especially in the Mediterranean and mountain regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schroter, Dagmar -- Cramer, Wolfgang -- Leemans, Rik -- Prentice, I Colin -- Araujo, Miguel B -- Arnell, Nigel W -- Bondeau, Alberte -- Bugmann, Harald -- Carter, Timothy R -- Gracia, Carlos A -- de la Vega-Leinert, Anne C -- Erhard, Markus -- Ewert, Frank -- Glendining, Margaret -- House, Joanna I -- Kankaanpaa, Susanna -- Klein, Richard J T -- Lavorel, Sandra -- Lindner, Marcus -- Metzger, Marc J -- Meyer, Jeannette -- Mitchell, Timothy D -- Reginster, Isabelle -- Rounsevell, Mark -- Sabate, Santi -- Sitch, Stephen -- Smith, Ben -- Smith, Jo -- Smith, Pete -- Sykes, Martin T -- Thonicke, Kirsten -- Thuiller, Wilfried -- Tuck, Gill -- Zaehle, Sonke -- Zierl, Barbel -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1333-7. Epub 2005 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. dagmar.schroeter@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16254151" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Biodiversity ; Carbon ; Climate ; Conservation of Natural Resources ; Crops, Agricultural ; *Ecosystem ; Environment ; Europe ; Greenhouse Effect ; Humans ; Models, Statistical ; Models, Theoretical ; Socioeconomic Factors ; Trees/growth & development ; Urban Population ; Water Supply ; Wood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-06-01
    Description: A biogeochemical model of vegetation using observed climate data predicts the high northern latitude greening trend over the past two decades observed by satellites and a marked setback in this trend after the Mount Pinatubo volcano eruption in 1991. The observed trend toward earlier spring budburst and increased maximum leaf area is produced by the model as a consequence of biogeochemical vegetation responses mainly to changes in temperature. The post-Pinatubo decline in vegetation in 1992-1993 is apparent as the effect of temporary cooling caused by the eruption. High-latitude CO(2) uptake during these years is predicted as a consequence of the differential response of heterotrophic respiration and net primary production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucht, Wolfgang -- Prentice, I Colin -- Myneni, Ranga B -- Sitch, Stephen -- Friedlingstein, Pierre -- Cramer, Wolfgang -- Bousquet, Philippe -- Buermann, Wolfgang -- Smith, Benjamin -- New York, N.Y. -- Science. 2002 May 31;296(5573):1687-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Potsdam Institute for Climate Impact Research, Post Office Box 601203, D-14412 Potsdam, Germany. Wolfgang.Lucht@pik-potsdam.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040194" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon Dioxide/metabolism ; *Climate ; Computer Simulation ; *Ecosystem ; Geography ; Models, Biological ; *Plant Development ; Plant Leaves/*growth & development ; Seasons ; Temperature ; *Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-23
    Description: The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Nina conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poulter, Benjamin -- Frank, David -- Ciais, Philippe -- Myneni, Ranga B -- Andela, Niels -- Bi, Jian -- Broquet, Gregoire -- Canadell, Josep G -- Chevallier, Frederic -- Liu, Yi Y -- Running, Steven W -- Sitch, Stephen -- van der Werf, Guido R -- England -- Nature. 2014 May 29;509(7502):600-3. doi: 10.1038/nature13376. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Montana State University, Institute on Ecosystems and the Department of Ecology, Bozeman, Montana 59717, USA [2] Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191 Gif Sur Yvette, France. ; 1] Swiss Federal Research Institute WSL, Dendroclimatology, Zurcherstrasse 111, Birmensdorf 8903, Switzerland [2] Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland. ; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA CNRS UVSQ, 91191 Gif Sur Yvette, France. ; Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, Massachusetts 02215, USA. ; Faculty of Earth and Life Sciences, VU University Amsterdam, 1085 De Boelelaan, 1081HV, Amsterdam, The Netherlands. ; Global Carbon Project, CSIRO, Marine and Atmospheric Research, Canberra, Australian Capital Territory 2601, Australia. ; ARC Centre of Excellence for Climate Systems Science & Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, USA. ; College of Engineering, Computing and Mathematics, University of Exeter, Exeter EX4 4QF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847888" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Australia ; Carbon Dioxide/analysis ; *Carbon Sequestration ; *Desert Climate ; *Ecosystem ; El Nino-Southern Oscillation ; Fires ; Models, Theoretical ; Rain ; Seasons ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...