ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 29 (1989), S. 100-106 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The present paper describes the evaluation of nonlinear thermally induced residual stresses in the cooling of polymer melt during injection molding of plastic components. The computational methodology adopted is based on the transfinite element approach, which is a hybrid scheme as it combines transform methods and classical Galerkin schemes with finite element formulations to preserve the modeling versatility. The applicability of the proposed formulations for understanding the physics and the nature of the nonlinear thermally induced stresses in the solidifying process of a sample amorphous polystyrene specimen demonstrates the basic capabilities and potential of the methodology. Results obtained agree qualitatively well with earlier research studies and experimental findings relevant to thermally induced residual stresses in the injection molding of plastic components.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 421-428 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The paper describes two different computational approaches for simulating the effects due to temperature variations and therein the associated thermally induced stresses and warpage with emphasis on computer aided engineering applications to ‘plastic’ components. One approach is the conventional finite element approach, and the other is termed as the transfinite element approach. The development of unified thermal/stress formulations for each of the aforementioned approaches is described for applications to injection molded plastic parts. Results of both computational formulations are in excellent agreement for predicting the thermal response and unified thermal/stress response and agree qualitatively with previous studies. For this study, it is found that the transfinite element formulations are computationally more efficient although the conventional formulations can still be effectively used. Both formulations are capable of serving as powerful computational tools to help part designers to predict the thermal/stress responses accurately and effectively. The unified concepts and approaches offer potential for extension to more complex geometries and for combined heat transfer and stress problems.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The paper describes computational developments towards thermal/structural modeling and analysis via a generalized common numerical methodology for effectively and efficiently interfacing interdisciplinary areas. The proposed formulations use transform methods in conjunction with finite element developments for each of the heat transfer and structural disciplines, respectively, providing avenues for obtaining the structural response due to thermal effects. An alternative methodology for unified thermal/structural analysis is presented. The potential of the approach is outlined in comparison with conventional schemes and existing practices. Highlights and characteristic features of the approach are described via general formulations and applications to several problems. Results obtained demonstrate excellent agreement in comparison with analytic and/or conventional finite element schemes accurately and efficiently.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 86-0874
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...