ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex(R), M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton(R), and mixtures of PTFE and Kapton(R). Furnace temperatures ranged from 340 to 640 C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different fuel mixture compositions, as well as the dependence of aerosol concentrations on temperature.
    Keywords: Chemistry and Materials (General)
    Type: GRC-E-DAA-TN10266 , International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Most propulsion systems are designed to be filled and flown, draining can be done but decontamination may be difficult. Transport of these systems may be difficult as well because flight weight vessels are not designed around DOT or UN shipping requirements. Repairs, failure analysis work or post firing inspections may be difficult or impossible to perform due to the hazards of residual propellants being present.
    Keywords: Ground Support Systems and Facilities (Space)
    Type: JSC-CN-26208 , 59th Propulsion Meeting; Apr 30, 2012 - May 04, 2012; San Antonio, TX; United States|41st Structures and Mechanical Behavior Subcommittee; Apr 30, 2012 - May 04, 2012; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.
    Keywords: Propellants and Fuels; Spacecraft Propulsion and Power
    Type: JSC-CN-31304
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A detailed review of ISO 15859 "Space Systems - Fluid Characteristics, Sampling and Test Methods" was performed An approach to revising Parts 1-9 and 11-13 was developed and concurred by the NASA Technical Standards Program Office. The approach was to align them with the highest level source documents, and not to program-specific requirements. The updated documents were prepared and presented.
    Keywords: Documentation and Information Science
    Type: JSC-CN-27375
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The NASA Johnson Space Center White Sands Test Facility (WSTF) has performed testing of hazardous and reactive aerospace fluids, including hypergolic propellants, with materials since the 1960s with the Apollo program. Amongst other test activities, Test 15 is a NASA standard test for evaluating the reactivity of materials with selected aerospace fluids, in particular hydrazine, monomethylhydrazine, uns-dimethylhydrazine, Aerozine 50, dinitrogen tetroxide oxidizers, and ammonia. This manuscript provides an overview of the history of Test 15 over a timeline ranging from prior to its development and first implementation as a NASA standard test in 1974 to its current refinement. Precursor documents to NASA standard tests, as they are currently known, are reviewed. A related supplementary test, international standardization, and enhancements to Test 15 are also discussed. Because WSTF was instrumental in the development and implementation of Test 15, WSTF experience and practices are referred to in this manuscript.
    Keywords: Propellants and Fuels
    Type: JSC-CN-25888 , JANNAF 41st Structures and Mechanical Behavior Joint Subcommittee Meeting; Apr 30, 2012 - May 04, 2012; San Antonio, TX; United States|JANNAF 28th Rocket Nozzle Technology Joint Subcommittee Meeting; Apr 30, 2012 - May 04, 2012; San Antonio, TX; United States|JANNAF 59th Propulsion Meeting Joint Subcommittee Meeting; Apr 30, 2012 - May 04, 2012; San Antonio, TX; United States|JANNAF 37th Propellant and Explosives Development and Characterization Joint Subcommittee Meeting; Apr 30, 2012 - May 04, 2012; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Perfluorinated greases are typically used as a thread lubricant in the assembly of non-welded nitrogen tetroxide (NTO) oxidizer systems. These greases, typically a perfluoroalkylether, with suspended polytetrafluoroethylene (PTFE) micro-powder, have attractive lubricating properties toward threaded components and are relatively chemically inert toward NTO oxidizers. A major drawback, however, is that perfluoroalkylether greases are soluble or dispersible in NTO oxidizers and can contaminate the propellant. The result is propellant that fails the non-volatile residue (NVR) specification analyses and that may have negative effects on test hardware performance and lifetime. Consequently, removal of the grease contaminants from NTO may be highly desirable. Methods for the removal of perfluorinated grease components from NTO oxidizers including distillation, adsorption, filtration, and adjustment of temperature are investigated and reported in this work. Solubility or dispersibility data for the perfluoroalkylether oil (Krytox(tm)143 AC) component of a perfluorinated grease (Krytox 240 AC) and for Krytox 240 AC in NTO were determined and are reported.
    Keywords: Nonmetallic Materials
    Type: 32nd and 21st JANNAF PDCS S and EPS Joint Meeting; Jul 26, 2004 - Jul 30, 2004; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Inductively coupled plasma-mass spectrometry (ICP-MS) is a highly sensitive technique sometimes used for the trace determination of silicon at a mass-to-charge (m/z) ratio of 28, the most abundant natural isotope of silicon. Unfortunately, ICP-MS is unable to differentiate between other sources of m/z 28 and false positive results for silicon will result when other sources of m/z 28 are present. Nitrogen was a major source of m/z 28 and contributes to the m/z 28 signal when hydrazine sample or nitric acid preservative is introduced into the plasma. Accordingly, this work was performed to develop a sample preparation step coupled with an ICP-MS analysis that minimized non-silicon sources of m/z 28. In the preparatory step of this method, the hydrazine sample was first decomposed predominately to nitrogen gas and water with copper-catalyzed hydrogen peroxide. In the analysis step, ICP-MS was used without nitric acid preservative in samples or standards. Glass, a potential source of silicon contamination, was also avoided where possible. The method was sensitive, accurate, and reliable for the determination of silicon in monopropellant grade hydrazine (MPH) in AF-E-332 elastomer leaching tests. Results for silicon in MPH were comparable to those reported in the literature for other studies.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: JANNAF 33rd PEDCS; Mar 06, 2006 - Mar 10, 2006; Sandestin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: WSTF-RD-WSTF-0972-001-03 , Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide|21st S and EPS Meeting; Jul 26, 2004 - Jul 30, 2004; Seattle, WA; United States|32nd PDCS Meeting; Jul 26, 2004 - Jul 30, 2004; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: This work presents an overview of the International Organization for Standardization (ISO) 15859 International Standard for Space Systems Fluid Characteristics, Sampling and Test Methods Parts 1 through 13 issued in June 2004. These standards establish requirements for fluid characteristics, sampling, and test methods for 13 fluids of concern to the propellant community and propellant characterization laboratories: oxygen, hydrogen, nitrogen, helium, nitrogen tetroxide, monomethylhydrazine, hydrazine, kerosene, argon, water, ammonia, carbon dioxide, and breathing air. A comparison of the fluid characteristics, sampling, and test methods required by the ISO standards to the current military and NASA specifications, which are in use at NASA facilities and elsewhere, is presented. Many ISO standards composition limits and other content agree with those found in the applicable parts of NASA SE-S-0073, NASA SSP 30573, military performance standards and details, and Compressed Gas Association (CGA) commodity specifications. The status of a current project managed at NASA Johnson Space Center White Sands Test Facility (WSTF) to rewrite these documents is discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF 33rd PEDCS; Mar 06, 2006 - Mar 10, 2006; Sandestin Beach, FL; United States|22nd SEPS Joint Meeting; Mar 06, 2006 - Mar 10, 2006; Sandestin Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: A sample of monomethylhydrazine (MMH) meeting MIL-PRF-27404C requirements was split into two portions. One portion was periodically exposed to atmospheric contaminants while stored in clear glass, and the other portion, held as a reference sample, was stored under nitrogen in amber glass. Impurities in both samples were periodically characterized by Gas Chromatograph-Mass Spectrometer (GC-MS) to determine what changes might occur in MMH when it is stored in less than ideal conditions. The qualitative and semi-quantitative results of this study are reported herein.
    Keywords: Nonmetallic Materials
    Type: 29th PDC; May 08, 2000 - May 12, 2000; Cocoa Beach, FL; United States|18th SEP Subcommittee Joint Meeting; Sep 08, 2000 - Sep 12, 2000; Cocoa Beach, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...