ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 66 (1994), S. 2820-2828 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: From the earliest manned missions, the volatile organic compound (VOC) content of spacecraft air has been a concern because of a much greater potential for contamination than air in most terrestrial settings. First, the volume of air is small compared to the mass of man- made materials comprising the interior furnishings of the spacecraft. These man-made materials offgas VOCs trapped during manufacture. Second, the nitrogen fraction of the air is recycled. Any VOCs not scrubbed out with charcoal filters or aqueous condensate (mainly water expired by the crew) will accumulate in the air. Third, the crew emits metabolic VOCs. Fourth, experimental payloads can also offgas or accidentally release a VOC; in fact a major organic constituent of the atmosphere is the disinfectant isopropanol released from swabs used in medical experiments.
    Keywords: Chemistry and Materials (General)
    Type: Fourth International Workshop on Ion Mobility Spectrometry: Proceedings of an International Speciality Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The Toxicology Laboratory at JSC and Exidyne Instrumentation Technologies (EIT) have developed a prototype Combustion Products Analyzer (CPA) to monitor, in real time, combustion products from a thermodegradation event on board spacecraft. The CPA monitors the four gases that are the most hazardous compounds (based on the toxicity potential and quantity produced) likely to be released during thermodegradation of synthetic materials: hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen cyanide (HCN), and carbon monoxide (CO). The levels of these compounds serve as markers to assist toxicologists in determining when the cabin atmosphere is safe for the crew to breathe following the contingency event. The CPA is a hand-held, battery-operated instrument containing four electrochemical sensors, one for each target gas, and a pump for drawing air across the sensors. The sensors are unique in their small size and zero-g compatibility. The immobilized electrolytes in each sensor permit the instrument to function in space and eliminate the possibility of electrolye leaks. The sample inlet system is equipped with a particulate filter that prevents clogging from airborne particulate matter. The CPA has a large digital display for gas concentrations and warming signals for low flow and low battery conditions. The CPA has flown on 13 missions beginning with STS 41 in Oct. 1990. Current efforts include the development of a microprocessor, an improved carbon monoxide sensor, and a ground-based test program to evaluate the CPA during actual thermodegradation of selected materials.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), Volume 2; p 590-596
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 2; p 522-531
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Space Station Freedom (SSF), with a 30-year projected lifetime and a completely closed-loop Environmental Control and Life Support System (ECLSS), is perhaps the ultimate 'tight building'. Recognizing the potential for the development of 'tight building syndrome' (TBS), and initiating actions to minimize possible TBS occurrences on SSF, requires a multidisciplinary approach that begins with appropriate design concerns and ends with detection and control measures on board SSF. This paper presents a brief summary of current experience with TBS on earth. Air contamination, including volatile organic compounds and microorganisms, is the focus of the discussion. Preventive steps to avoid TBS, control of environmental factors that may lead to TBS, and use of real-time instrumentation for the detection of potential causes of TBS are also outlined.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: SAE PAPER 901382
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-31677 , International Society for Ion Mobility Spectrometry Meeting; Jul 25, 2014; Ashville, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: SAE PAPER 921414 , ; 8 p.|SAE, International Conference on Environmental Systems; Jul 13, 1992 - Jul 16, 1992; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Since the early years of the manned space program, NASA has developed and used exposure limits called Spacecraft Maximum Allowable Concentrations (SMACs) to help protect astronauts from airborne toxicants. Most of these SMACS are based on an exposure duration of 7 days, since this is the duration of a 'typical' mission. A set of 'contingency SMACs' is also being developed for scenarios involving brief (1-hour or 24- hour) exposures to relatively high levels of airborne toxicants from event-related 'contingency' releases of contaminants. The emergency nature of contingency exposures dictates the use of different criteria for setting exposure limits. The NASA JSC Toxicology Group recently began a program to document the rationales used to set new SMACs and plans to review the older, 7-day SMACs. In cooperation with the National Research Council's Committee on Toxicology, a standard procedure has been developed for researching, setting, and documenting SMAC values.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: SAE PAPER 921410 , ; 6 p.|SAE, International Conference on Environmental Systems; Jul 13, 1992 - Jul 16, 1992; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the relevant concentrations at which they are routinely detected in archival water samples from the ISS.
    Keywords: Space Transportation and Safety; Man/System Technology and Life Support
    Type: JSC-CN-30982 , International Society for Ion Mobility Spectrometry Conference; Jul 31, 2014; Ashville, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...