ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conlon, Paul -- Steinman, Lawrence -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1801-2; author reply 1801-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12053936" target="_blank"〉PubMed〈/a〉
    Keywords: Clinical Trials as Topic ; Controlled Clinical Trials as Topic ; Double-Blind Method ; Humans ; Ligands ; Multicenter Studies as Topic ; Multiple Sclerosis/*drug therapy ; Peptide Fragments/*adverse effects/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-11-27
    Description: Multiple sclerosis is a demyelinating disease, characterized by inflammation in the brain and spinal cord, possibly due to autoimmunity. Large-scale sequencing of cDNA libraries, derived from plaques dissected from brains of patients with multiple sclerosis (MS), indicated an abundance of transcripts for osteopontin (OPN). Microarray analysis of spinal cords from rats paralyzed by experimental autoimmune encephalomyelitis (EAE), a model of MS, also revealed increased OPN transcripts. Osteopontin-deficient mice were resistant to progressive EAE and had frequent remissions, and myelin-reactive T cells in OPN-/- mice produced more interleukin 10 and less interferon-gamma than in OPN+/+ mice. Osteopontin thus appears to regulate T helper cell-1 (TH1)-mediated demyelinating disease, and it may offer a potential target in blocking development of progressive MS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chabas, D -- Baranzini, S E -- Mitchell, D -- Bernard, C C -- Rittling, S R -- Denhardt, D T -- Sobel, R A -- Lock, C -- Karpuj, M -- Pedotti, R -- Heller, R -- Oksenberg, J R -- Steinman, L -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1731-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, B002, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721059" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Encephalomyelitis, Autoimmune, ; Experimental/genetics/immunology/metabolism/pathology ; Expressed Sequence Tags ; Gene Deletion ; *Gene Expression Profiling ; Gene Library ; Humans ; Inflammation/genetics/immunology/metabolism/pathology ; Interferon-gamma/genetics/metabolism ; Interleukin-10/genetics/metabolism ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Multiple Sclerosis/*genetics/immunology/*metabolism/pathology ; Oligonucleotide Array Sequence Analysis ; Osteopontin ; RNA, Messenger/genetics/metabolism ; Rats ; Sialoglycoproteins/deficiency/genetics/*metabolism ; Spinal Cord/metabolism ; Th1 Cells/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-02-26
    Description: The inheritance of particular alleles of major histocompatibility complex class II genes increases the risk for various human autoimmune diseases; however, only a small percentage of individuals having an allele associated with susceptibility develop disease. The identification of allelic variants more precisely correlated with disease susceptibility would greatly facilitate clinical screening and diagnosis. Oligonucleotide-primed gene amplification in vitro was used to determine the nucleotide sequence of a class II variant found almost exclusively in patients with the autoimmune skin disease pemphigus vulgaris. In addition to clinical implications, the disease-restricted distribution of this variant should provide insight into the molecular mechanisms underlying associations between diseases and HLA-class II genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sinha, A A -- Brautbar, C -- Szafer, F -- Friedmann, A -- Tzfoni, E -- Todd, J A -- Steinman, L -- McDevitt, H O -- New York, N.Y. -- Science. 1988 Feb 26;239(4843):1026-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2894075" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Autoimmune Diseases/*genetics/immunology ; Base Sequence ; DNA/genetics ; Gene Amplification ; Genetic Variation ; HLA-D Antigens/*genetics ; HLA-DQ Antigens/*genetics/immunology ; HLA-DR Antigens/immunology ; Humans ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Pemphigus/*genetics/immunology ; Polymorphism, Restriction Fragment Length
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-05-20
    Description: Class II major histocompatibility (MHC) molecules have an immunoregulatory role. These cell-surface glycoproteins present fragments of protein antigens (or peptides) to thymus-derived lymphocytes (T cells). Nucleotide sequence polymorphism in the genes that encode the class II MHC products determines the specificity of the immune response and is correlated with the development of autoimmune diseases. This study identifies certain class II polymorphic amino acid residues that are strongly associated with susceptibility to insulin-dependent diabetes mellitus, rheumatoid arthritis, and pemphigus vulgaris. These findings implicate particular class II MHC isotypes in susceptibility to each disease and suggest new prophylactic and therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todd, J A -- Acha-Orbea, H -- Bell, J I -- Chao, N -- Fronek, Z -- Jacob, C O -- McDermott, M -- Sinha, A A -- Timmerman, L -- Steinman, L -- New York, N.Y. -- Science. 1988 May 20;240(4855):1003-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3368786" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arthritis, Rheumatoid/immunology ; Autoantibodies/*genetics ; Autoimmune Diseases/*genetics ; Diabetes Mellitus, Type 1/immunology ; HLA-D Antigens/*genetics ; Humans ; Major Histocompatibility Complex ; Molecular Sequence Data ; Pemphigus/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-02-19
    Description: Understanding the neuropathology of multiple sclerosis (MS) is essential for improved therapies. Therefore, identification of targets specific to pathological types of MS may have therapeutic benefits. Here we identify, by laser-capture microdissection and proteomics, proteins unique to three major types of MS lesions: acute plaque, chronic active plaque and chronic plaque. Comparative proteomic profiles identified tissue factor and protein C inhibitor within chronic active plaque samples, suggesting dysregulation of molecules associated with coagulation. In vivo administration of hirudin or recombinant activated protein C reduced disease severity in experimental autoimmune encephalomyelitis and suppressed Th1 and Th17 cytokines in astrocytes and immune cells. Administration of mutant forms of recombinant activated protein C showed that both its anticoagulant and its signalling functions were essential for optimal amelioration of experimental autoimmune encephalomyelitis. A proteomic approach illuminated potential therapeutic targets selective for specific pathological stages of MS and implicated participation of the coagulation cascade.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, May H -- Hwang, Sun-Il -- Roy, Dolly B -- Lundgren, Deborah H -- Price, Jordan V -- Ousman, Shalina S -- Fernald, Guy Haskin -- Gerlitz, Bruce -- Robinson, William H -- Baranzini, Sergio E -- Grinnell, Brian W -- Raine, Cedric S -- Sobel, Raymond A -- Han, David K -- Steinman, Lawrence -- T32 AI007290/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Feb 28;451(7182):1076-81. doi: 10.1038/nature06559. Epub 2008 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18278032" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Blood Coagulation ; Encephalomyelitis, Autoimmune, Experimental/immunology/metabolism/pathology ; Female ; *Gene Expression Profiling ; Humans ; Inflammation/metabolism/pathology ; Male ; Mice ; Middle Aged ; Multiple Sclerosis/classification/drug therapy/*metabolism/*pathology ; Protein C/genetics/metabolism/pharmacology ; *Proteomics ; Th1 Cells/immunology ; Th2 Cells/immunology ; Thrombin/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-08-10
    Description: Expression of T cell receptor (TCR) V alpha genes in tumor-infiltrating lymphocytes (TILs) within intraocular melanoma was studied. Primers for 18 different human TCR V alpha families were used to analyze TCR V alpha-C alpha gene rearrangements in TIL in these melanomas obtained at surgery. A limited number of TCR V alpha genes were expressed and rearranged in these tumors, and TILs expressing V alpha 7 were found in seven of eight of these uveal melanomas. TCR gene usage is also restricted in experimental autoimmune disease, in T cells within organs like skin and other epithelial tissues, and in the brain of patients with multiple sclerosis (MS). The restricted usage of TCR genes in TIL may indicate that a specific antigen in these melanomas is targeted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nitta, T -- Oksenberg, J R -- Rao, N A -- Steinman, L -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):672-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2382141" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Neoplasm/genetics ; Humans ; Lymphocytes/*immunology ; Melanoma/genetics/*immunology ; Molecular Sequence Data ; Multigene Family ; Oligonucleotide Probes ; Polymerase Chain Reaction ; RNA, Messenger/genetics ; Receptors, Antigen, T-Cell/*genetics ; Uveal Neoplasms/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-13
    Description: Our increasing understanding of the pathophysiology of autoimmune disease has revealed a number of checkpoints that can be targeted with immune therapy, including key mediators of lymphocyte adhesion and migration, destructive cytokines involved in tissue damage, and the complex of molecules critical in the presentation of self-antigen and the activation of autoaggressive T lymphocytes. In many organ-specific autoimmune diseases, the identity of the molecules attacked by T cells and autoantibodies is known and attempts are under way to tolerize the immune system with a high level of specificity to these targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinman, Lawrence -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):212-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurological Sciences and Neurology, and Interdepartmental Program in Immunology, Stanford University, Stanford, CA 94305, USA. steinman@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Autoantibodies/immunology ; Autoantigens/immunology ; Autoimmune Diseases/*therapy ; Clinical Trials as Topic ; Cytokines/antagonists & inhibitors/immunology/therapeutic use ; Epitopes/immunology ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use ; Immunosuppressive Agents/therapeutic use ; *Immunotherapy ; Receptors, Cytokine/antagonists & inhibitors/immunology ; Receptors, Lymphocyte Homing/antagonists & inhibitors/immunology/metabolism ; Self Tolerance ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-11-08
    Description: Local catabolism of the amino acid tryptophan (Trp) by indoleamine 2,3-dioxygenase (IDO) is considered an important mechanism of regulating T cell immunity. We show that IDO transcription was increased when myelin-specific T cells were stimulated with tolerogenic altered self-peptides. Catabolites of Trp suppressed proliferation of myelin-specific T cells and inhibited production of proinflammatory T helper-1 (T(H)1) cytokines. N-(3,4,-Dimethoxycinnamoyl) anthranilic acid (3,4-DAA), an orally active synthetic derivative of the Trp metabolite anthranilic acid, reversed paralysis in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis (MS). Trp catabolites and their derivatives offer a new strategy for treating T(H)1-mediated autoimmune diseases such as MS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Platten, Michael -- Ho, Peggy P -- Youssef, Sawsan -- Fontoura, Paulo -- Garren, Hideki -- Hur, Eun Mi -- Gupta, Rohit -- Lee, Lowen Y -- Kidd, Brian A -- Robinson, William H -- Sobel, Raymond A -- Selley, Michael L -- Steinman, Lawrence -- New York, N.Y. -- Science. 2005 Nov 4;310(5749):850-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University, Stanford, CA 94305, USA. michael.platten@uni-tuebingen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16272121" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/administration & ; dosage/pharmacology/*therapeutic use ; Antigen-Presenting Cells/drug effects/immunology ; Brain/pathology ; Cell Line ; Cytokines/biosynthesis ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/*drug therapy/immunology ; Female ; Histocompatibility Antigens Class II/immunology/metabolism ; Immune Tolerance ; Immunosuppressive Agents/pharmacology/therapeutic use ; Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics/metabolism ; Interferon-gamma/immunology ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Microglia/drug effects/immunology ; Multiple Sclerosis/drug therapy/immunology/pathology ; Myelin Proteins/immunology ; Signal Transduction ; Spinal Cord/pathology ; T-Lymphocytes/immunology ; Th1 Cells/immunology ; Th2 Cells/immunology ; Tryptophan/*metabolism ; ortho-Aminobenzoates/administration & dosage/pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-09
    Description: Lipid mediators influence immunity in myriad ways. For example, circulating sphingosine-1-phosphate (S1P) is a key regulator of lymphocyte egress. Although the majority of plasma S1P is bound to apolipoprotein M (ApoM) in the high-density lipoprotein (HDL) particle, the immunological functions of the ApoM-S1P complex are unknown. Here we show that ApoM-S1P is dispensable for lymphocyte trafficking yet restrains lymphopoiesis by activating the S1P1 receptor on bone marrow lymphocyte progenitors. Mice that lacked ApoM (Apom(-/-)) had increased proliferation of Lin(-) Sca-1(+) cKit(+) haematopoietic progenitor cells (LSKs) and common lymphoid progenitors (CLPs) in bone marrow. Pharmacological activation or genetic overexpression of S1P1 suppressed LSK and CLP cell proliferation in vivo. ApoM was stably associated with bone marrow CLPs, which showed active S1P1 signalling in vivo. Moreover, ApoM-bound S1P, but not albumin-bound S1P, inhibited lymphopoiesis in vitro. Upon immune stimulation, Apom(-/-) mice developed more severe experimental autoimmune encephalomyelitis, characterized by increased lymphocytes in the central nervous system and breakdown of the blood-brain barrier. Thus, the ApoM-S1P-S1P1 signalling axis restrains the lymphocyte compartment and, subsequently, adaptive immune responses. Unique biological functions imparted by specific S1P chaperones could be exploited for novel therapeutic opportunities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blaho, Victoria A -- Galvani, Sylvain -- Engelbrecht, Eric -- Liu, Catherine -- Swendeman, Steven L -- Kono, Mari -- Proia, Richard L -- Steinman, Lawrence -- Han, May H -- Hla, Timothy -- F32 CA14211/CA/NCI NIH HHS/ -- F32 CA142117/CA/NCI NIH HHS/ -- HL67330/HL/NHLBI NIH HHS/ -- HL70694/HL/NHLBI NIH HHS/ -- HL89934/HL/NHLBI NIH HHS/ -- P01 HL070694/HL/NHLBI NIH HHS/ -- P20 RR017677/RR/NCRR NIH HHS/ -- P30 CA138313/CA/NCI NIH HHS/ -- R01 HL089934/HL/NHLBI NIH HHS/ -- R37 HL067330/HL/NHLBI NIH HHS/ -- Z01 DK056014-02/Intramural NIH HHS/ -- Z01 DK056015-01/Intramural NIH HHS/ -- England -- Nature. 2015 Jul 16;523(7560):342-6. doi: 10.1038/nature14462. Epub 2015 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York 10065, USA [2] Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA. ; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26053123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins/deficiency/genetics/*metabolism ; Blood-Brain Barrier/pathology ; Cell Movement ; Cell Proliferation/genetics ; Central Nervous System/immunology/metabolism/*pathology ; Encephalomyelitis, Autoimmune, ; Experimental/genetics/immunology/metabolism/pathology ; Female ; Fingolimod Hydrochloride/pharmacology ; Hematopoietic Stem Cells/cytology/metabolism ; Inflammation/immunology/metabolism/pathology ; Lipoproteins, HDL/*metabolism ; Lymphocytes/*cytology/immunology/*metabolism ; Lymphoid Progenitor Cells/cytology/metabolism ; *Lymphopoiesis ; Lysophospholipids/agonists/blood/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Protein Binding ; Receptors, Lysosphingolipid/metabolism ; Signal Transduction ; Sphingosine/agonists/*analogs & derivatives/blood/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1985-01-25
    Description: Administration of a monoclonal antibody (GK1.5) that recognizes the L3T4 marker present on helper T cells prevented the development of experimental allergic encephalomyelitis (EAE) in mice. Furthermore, treatment with GK1.5 reversed EAE when the antibody was given to paralyzed animals. In vivo injection of GK1.5 selectively reduced the number of L3T4+ cells in the spleen and the lymph nodes. These results suggest that manipulation of the human equivalent of the murine L3T4+ T-cell subset with monoclonal antibodies may provide effective therapy for certain autoimmune diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waldor, M K -- Sriram, S -- Hardy, R -- Herzenberg, L A -- Lanier, L -- Lim, M -- Steinman, L -- GM-17367/GM/NIGMS NIH HHS/ -- NS-18235/NS/NINDS NIH HHS/ -- NS-571/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1985 Jan 25;227(4685):415-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3155574" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*therapeutic use ; Encephalomyelitis, Autoimmune, Experimental/pathology/*therapy ; Leukocyte Count ; Lymph Nodes/pathology ; Mice ; Spleen/pathology ; T-Lymphocytes, Helper-Inducer/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...