ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kopp, Robert E; Schumann, Dirk; Raub, Timothy; Powars, David S; Godfrey, Linda V; Swanson-Hysell, Nicholas L; Maloof, Adam C; Vali, Hojatollah (2009): An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum. Paleoceanography, 24(4), PA4211, https://doi.org/10.1029/2009PA001783
    Publication Date: 2024-01-09
    Description: On the mid-Atlantic Coastal Plain of the United States, Paleocene sands and silts are replaced during the Paleocene-Eocene Thermal Maximum (PETM) by the kaolinite-rich Marlboro Clay. The clay preserves abundant magnetite produced by magnetotactic bacteria and novel, presumptively eukaryotic, iron-biomineralizing microorganisms. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil distribution in the context of stratigraphy and carbon isotope data and identify three magnetic facies in the clay: one characterized by a mix of detrital particles and magnetofossils, a second with a higher magnetofossil-to-detrital ratio, and a third with only transient magnetofossils. The distribution of these facies suggests that suboxic conditions promoting magnetofossil production and preservation occurred throughout inner middle neritic sediments of the Salisbury Embayment but extended only transiently to outer neritic sediments and the flanks of the embayment. Such a distribution is consistent with the development of a system resembling a modern tropical river-dominated shelf.
    Keywords: -; Altitude; Ancora; Busch_Gardens; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Event label; Leg174AX; Lithologic unit/sequence; Magnetite; New Jersey; North American East Coast; Ocean Drilling Program; ODP; Randall_Farm; Sea_Girt; Surprise_Hill
    Type: Dataset
    Format: text/tab-separated-values, 283 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kopp, Robert E; Raub, Timothy; Schumann, Dirk; Vali, Hojatollah; Smirnov, Alexei; Kirschvink, Joseph L (2007): Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States. Paleoceanography, 22(4), PA4103, https://doi.org/10.1029/2007PA001473
    Publication Date: 2024-03-23
    Description: Previous workers identified a magnetically anomalous clay layer deposited on the northern United States Atlantic Coastal Plain during the Paleocene-Eocene thermal maximum (PETM). The finding inspired the highly controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR), isothermal and anhysteretic remanent magnetization, first-order reversal curve, and transmission electron microscopy analyses of late Paleocene and early Eocene sediments in drill core from Ancora, New Jersey. A novel paleogeographic analysis applying a recent paleomagnetic pole from the Faeroe Islands indicates that New Jersey during the initial Eocene had a ~6°-9° lower paleolatitude (~27.3° for Ancora) and a more zonal shoreline trace than in conventional reconstructions. Our investigations of the PETM clay from Ancora reveal abundant magnetite nanoparticles bearing signature traits of crystals produced by magnetotactic bacteria. This result, the first identification of ancient biogenic magnetite using FMR, argues that the anomalous magnetic properties of the PETM sediments are not produced by an impact. They instead reflect environmental changes along the eastern margin of North America during the PETM that led to enhanced production and/or preservation of magnetofossils.
    Keywords: -; Absorption; Ancora; ARM/IRM; Coercivity of remanence; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; Factor; Leg174AX; New Jersey; Ocean Drilling Program; ODP; Ratio; Saturation isothermal remanent magnetization
    Type: Dataset
    Format: text/tab-separated-values, 219 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-25
    Description: We use published Pacific benthic foraminiferal oxygen isotope data and Mg/Ca records to derive a Cenozoic (66 Ma) global mean sea level (GMSL) estimate. This paper is novel in providing the first Pacific benthic foraminiferal oxygen isotopic splice for the entire Cenozoic, a detailed (Myr scale) sea-level record for the last 48 Ma based on the benthic foraminiferal oxygen isotopic and Mg/Ca approach (Mg/Ca records older than 48 Ma are uncertain). We use the 2012 Geological Time Scale (GTS), a 2-Myr smoothed paleotemperatures (Cramer et al., 2011) who used a low-pass filter that passes 〉80% of the amplitude for frequencies 〈0.5/Myr (wavelength 〉2 Myr), ramping down to 〈20% of the amplitude for frequencies 〉1.25/Myr (wavelength 〈0.8 Myr). We used equation 7b Cramer et al. (2011) and a simplified paleotemperature equation for benthic foraminifera T = 16.1– 4.76 [δ18Obenthic – (δ18Oseawater – 0.27)] to solve for oxygen isotopic changes of seawater. We assume that shorter term (〈2 Myr) temperature changes comprise ~20% of the oxygen isotopic changes of seawater changes. The resultant oxygen isotopic changes of seawater estimate was scaled to GMSL changes using a revised seawater oxygen isotopes to sea-level calibration of 0.13‰/10 m of Winnick and Caves (2015). Because of temperature effects notable during peak Pleistocene interglacials, we iteratively fit the last interglacial cycle to known sea level during MIS5e and applied these temperatures (1.8°C) to major Middle to Late Pleistocene peak interglacials, tapering the temperature from the long term estimates for the peak interglacials using a Gaussian filter. We applied an empirically correction for carbonate ion change across the Eocene-Oligocene transition, to remove an apparent warming effect of ~1.5°C; we applied their empirical correction to the sea-level curve, reducing the amplitude by 28 meters from 34.17 to 34.30 Ma.
    Keywords: 138-846; 184-1146; 198-1209; 199-1218; 321-U1337; 321-U1338; AGE; Calculated; Calculated according to Cramer et al. (2011); Cenozoic; COMPCORE; Composite Core; Cryosphere; Event label; Exp321; Foraminifera, benthic δ18O; Joides Resolution; Leg138; Leg184; Leg198; Leg199; North Pacific Ocean; Oxygen isotopes; Pacific Equatorial Age Transect II / Juan de Fuca; PC; Piston corer; Reference/source; sea-level; Sea level, relative; South China Sea; South Pacific Ocean; V19; V19-30; Vema; δ18O, seawater, reconstructed
    Type: Dataset
    Format: text/tab-separated-values, 64115 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-25
    Description: We use published Pacific benthic foraminiferal oxygen isotope data and Mg/Ca records to derive a Cenozoic (66 Ma) global mean sea level (GMSL) estimate. This paper is novel in providing the first Pacific benthic foraminiferal oxygen isotopic splice for the entire Cenozoic, a detailed (Myr scale) sea-level record for the last 48 Ma based on the benthic foraminiferal oxygen isotopic and Mg/Ca approach (Mg/Ca records older than 48 Ma are uncertain). We use the 2012 Geological Time Scale (GTS), a 2-Myr smoothed paleotemperatures (Cramer et al., 2011) who used a low-pass filter that passes 〉80% of the amplitude for frequencies 〈0.5/Myr (wavelength 〉2 Myr), ramping down to 〈20% of the amplitude for frequencies 〉1.25/Myr (wavelength 〈0.8 Myr). We used equation 7b Cramer et al. (2011) and a simplified paleotemperature equation for benthic foraminifera T = 16.1– 4.76 [δ18Obenthic – (δ18Oseawater – 0.27)] to solve for oxygen isotopic changes of seawater. We assume that shorter term (〈2 Myr) temperature changes comprise ~20% of the oxygen isotopic changes of seawater changes. The resultant oxygen isotopic changes of seawater estimate was scaled to GMSL changes using a revised seawater oxygen isotopes to sea-level calibration of 0.13‰/10 m of Winnick and Caves (2015). Because of temperature effects notable during peak Pleistocene interglacials, we iteratively fit the last interglacial cycle to known sea level during MIS5e and applied these temperatures (1.8°C) to major Middle to Late Pleistocene peak interglacials, tapering the temperature from the long term estimates for the peak interglacials using a Gaussian filter. We applied an empirically correction for carbonate ion change across the Eocene-Oligocene transition, to remove an apparent warming effect of ~1.5°C; we applied their empirical correction to the sea-level curve, reducing the amplitude by 28 meters from 34.17 to 34.30 Ma.
    Keywords: 138-846; 184-1146; 198-1209; 199-1218; 321-U1337; 321-U1338; AGE; Cenozoic; COMPCORE; Composite Core; Cryosphere; Exp321; Joides Resolution; Leg138; Leg184; Leg198; Leg199; North Pacific Ocean; Oxygen isotopes; Pacific Equatorial Age Transect II / Juan de Fuca; PC; Piston corer; sea-level; Sea level, relative; South China Sea; South Pacific Ocean; V19; V19-30; Vema
    Type: Dataset
    Format: text/tab-separated-values, 3193 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-09
    Description: The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 11861-11866, doi: 10.1073/pnas.1703568114 .
    Description: The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.
    Description: The authors acknowledge funding for this study from NOAA Grants #424-18 45GZ and #NA11OAR4310101, National Science Foundation (NSF) Grants OCE 1458904, EAR 1520683, and EAR Postdoctoral Fellowship 1625150, the Community Foundation of New Jersey, and David and Arleen McGlade.
    Keywords: Tropical cyclones ; Flood height ; Storm surge ; New York City ; Sea-level rise ; Hurricane ; Coastal flooding ; Storm tracks
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-08
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Harvey, T., Hamlington, B. D., Frederikse, T., Nerem, R. S., Piecuch, C. G., Hammond, W. C., Blewitt, G., Thompson, P. R., Bekaert, D. P. S., Landerer, F. W., Reager, J. T., Kopp, R. E., Chandanpurkar, H., Fenty, I., Trossman, D. S., Walker, J. S., & Boening, C. W. Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise. Communications Earth & Environment, 2(1), (2021): 233, https://doi.org/10.1038/s43247-021-00300-w.
    Description: Regional sea-level changes are caused by several physical processes that vary both in space and time. As a result of these processes, large regional departures from the long-term rate of global mean sea-level rise can occur. Identifying and understanding these processes at particular locations is the first step toward generating reliable projections and assisting in improved decision making. Here we quantify to what degree contemporary ocean mass change, sterodynamic effects, and vertical land motion influence sea-level rise observed by tide-gauge locations around the contiguous U.S. from 1993 to 2018. We are able to explain tide gauge-observed relative sea-level trends at 47 of 55 sampled locations. Locations where we cannot explain observed trends are potentially indicative of shortcomings in our coastal sea-level observational network or estimates of uncertainty.
    Description: The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. C.G.P. was supported by NASA grant 80NSSC20K1241. B.D.H., T.C.H., and T.F. were supported by NASA JPL Task 105393.281945.02.25.04.59. R.E.K. and J.S.W. were supported by U.S. National Aeronautics and Space Administration (grants 80NSSC17K0698, 80NSSC20K1724 and JPL task 105393.509496.02.08.13.31) and U.S. National Science Foundation (grant ICER-1663807). P.R.T. acknowledges financial support from the NOAA Global Ocean Monitoring and Observing program in support of the University of Hawaii Sea Level Center (NA11NMF4320128). The ECCO project is funded by the NASA Physical Oceanography; Modeling, Analysis, and Prediction; and Cryosphere Programs.
    Keywords: Climate sciences ; Ocean sciences ; Solid Earth sciences
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 58(3), (2020): e2019RG000672, doi:10.1029/2019RG000672.
    Description: Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
    Description: The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors acknowledge support from the National Aeronautics and Space Administration under Grants 80NSSC17K0565, 80NSSC170567, 80NSSC17K0566, 80NSSC17K0564, and NNX17AB27G. A. A. acknowledges support under GRACE/GRACEFO Science Team Grant (NNH15ZDA001N‐GRACE). T. W. acknowledges support by the National Aeronautics and Space Administration (NASA) under the New (Early Career) Investigator Program in Earth Science (Grant: 80NSSC18K0743). C. G. P was supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution.
    Keywords: Sea level ; Satellite observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-23
    Description: The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-05-20
    Description: Despite considerable advances in process understanding, numerical modeling, and the observational record of ice sheet contributions to global mean sea-level rise (SLR) since the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, severe limitations remain in the predictive capability of ice sheet models. As a consequence, the potential contributions of ice sheets remain the largest source of uncertainty in projecting future SLR. Here, we report the findings of a structured expert judgement study, using unique techniques for modeling correlations between inter- and intra-ice sheet processes and their tail dependences. We find that since the AR5, expert uncertainty has grown, in particular because of uncertain ice dynamic effects. For a +2 °C temperature scenario consistent with the Paris Agreement, we obtain a median estimate of a 26 cm SLR contribution by 2100, with a 95th percentile value of 81 cm. For a +5 °C temperature scenario more consistent with unchecked emissions growth, the corresponding values are 51 and 178 cm, respectively. Inclusion of thermal expansion and glacier contributions results in a global total SLR estimate that exceeds 2 m at the 95th percentile. Our findings support the use of scenarios of 21st century global total SLR exceeding 2 m for planning purposes. Beyond 2100, uncertainty and projected SLR increase rapidly. The 95th percentile ice sheet contribution by 2200, for the +5 °C scenario, is 7.5 m as a result of instabilities coming into play in both West and East Antarctica. Introducing process correlations and tail dependences increases estimates by roughly 15%.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...