ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-26
    Description: Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks (NOMADSS) campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back-trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-20
    Description: Li et al. (Reports, 18 April 2014, p. 292) proposed a unity nitrous acid (HONO) yield for reaction between nitrogen dioxide and the hydroperoxyl-water complex and suggested a substantial overestimation in HONO photolysis contribution to hydroxyl radical budget. Based on airborne observations of all parameters in this chemical system, we have determined an upper-limit HONO yield of 0.03 for the reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, Chunxiang -- Zhou, Xianliang -- Pu, Dennis -- Stutz, Jochen -- Festa, James -- Spolaor, Max -- Cantrell, Christopher -- Mauldin, Roy L -- Weinheimer, Andrew -- Haggerty, Julie -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aaa1992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wadsworth Center, New York State Department of Health, Albany, NY, USA. ; Wadsworth Center, New York State Department of Health, Albany, NY, USA. Department of Environmental Health Sciences, State University of New York, Albany, NY, USA. xianliang.zhou@health.ny.gov. ; Department of Environmental Health Sciences, State University of New York, Albany, NY, USA. ; University of California, Los Angeles, CA, USA. ; University of Colorado, Boulder, CO, USA. ; University of Colorado, Boulder, CO, USA. Department of Physics, University of Helsinki, Helsinki, Finland. ; National Center for Atmosphere Research, Earth System Laboratory, Boulder, CO, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089507" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-12
    Description: Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, Chunxiang -- Zhou, Xianliang -- Pu, Dennis -- Stutz, Jochen -- Festa, James -- Spolaor, Max -- Tsai, Catalina -- Cantrell, Christopher -- Mauldin, Roy L 3rd -- Campos, Teresa -- Weinheimer, Andrew -- Hornbrook, Rebecca S -- Apel, Eric C -- Guenther, Alex -- Kaser, Lisa -- Yuan, Bin -- Karl, Thomas -- Haggerty, Julie -- Hall, Samuel -- Ullmann, Kirk -- Smith, James N -- Ortega, John -- Knote, Christoph -- England -- Nature. 2016 Apr 28;532(7600):489-91. doi: 10.1038/nature17195. Epub 2016 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wadsworth Center, New York State Department of Health, Albany, New York, USA. ; Department of Environmental Health Sciences, State University of New York, Albany, New York, USA. ; Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), California, USA. ; Department of Atmospheric and Oceanic Sciences, University of Colorado at Boulder, Boulder, Colorado, USA. ; Department of Physics, University of Helsinki, Helsinki, Finland. ; National Center for Atmospheric Research, Boulder, Colorado, USA. ; Pacific Northwest National Laboratory, Richland, Washington, USA. ; NOAA, Earth System Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA. ; Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA. ; Institute for Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria. ; University of Eastern Finland, Kuopio, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27064904" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols/chemistry ; Atlantic Ocean ; Atmosphere/*chemistry ; Nitrates/analysis/chemistry ; Nitric Acid/chemistry ; Nitrogen/*analysis/*chemistry ; Nitrogen Oxides/*analysis/*chemistry ; Nitrous Acid/analysis/chemistry ; North Carolina ; Oxidants/chemistry ; Photolysis ; Seawater/*chemistry ; South Carolina
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract Several great earthquakes occur on thrust faults along both subduction and continental collision zones. These events often feature a large shallow slip patch, an asymmetric pattern for the ground motion, and the static deformation between the hanging wall and footwall of the fault. From a mechanical point of view, this asymmetry can be partially explained taking into account the interaction between the fault and the seismic radiation emitted during rupture propagation and stored in the hanging wall in the vicinity of the free surface. We numerically investigate the rupture dynamics along a thrust dipping fault impacting onto the free surface at a dip angle of δ = 20°, in a 2‐D elastic model. We show how the wave interaction of the rupture with the free surface leads to a breaking of the reflection symmetry. Compared to a rupture propagating in an infinite medium, this interaction enhances the slip rate in the updip direction as an effect of the coupling between slip and normal traction around the crack front. The breaking of symmetry leads to sizeable acceleration of the rupture toward asymptotic speed with inertia acquisition, and dependence of the rupture dynamics on the level of friction along the interface might produce an interface opening over a finite length in the vicinity of the surface. We finally explore how the wave interaction drives amplification and asymmetry of the shallow slip and the vertical displacement at the surface. The described effects should be considered in various numerical approaches and in interpretation of geophysical observations.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1972-10-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-05
    Description: We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m−3, model: 1.51 ± 0.08 ng m−3), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) are below the instrument's detection limit (detection limit per flight: 58–228 pg m−3), consistent with model-calculated Hg(II) concentrations of 0–196 ng m−3. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 ng m−3, model: 67 ± 44 ng m−3). The highest Hg(II) concentrations, 300–680 pg m−3, were observed in dry (RH 〈 35 %) and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0)+Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0)+Br, result in 1.5–2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the base simulation to 2.8–1.2 months in our sensitivity simulations. In order to maintain the modeled global burden of THg, we need to increase the in-cloud reduction of Hg(II), thus leading to faster chemical cycling between Hg(0) and Hg(II). Observations and model results for the NOMADSS campaign suggest that the subtropical anticyclones are significant global sources of Hg(II).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-19
    Description: We report on measurements of CH4, O3, NO2, BrO and some key brominated source gases within the subtropical lowermost stratosphere (LS), tropical upper troposphere (UT) and tropopause layer (TTL) (14–18.5 km). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration - Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during 6 deployments over the Eastern Pacific in early 2013. O3, NO2, and BrO were remotely monitored by analyzing limb scattered skylight in the UV and visible spectral ranges using the observations of the mini-DOAS (Differential Optical Absorption Spectroscopy) instrument (Stutz et al., 2016). CH4 was measured in-situ by the Harvard HUPCRS instrument and by the NOAA-UCATS instrument. O3 was recorded at high precision by the NOAA dual-beam UV photometer, and some key brominated source gases were analyzed in whole air samples of the GWAS (Global Hawk Whole Air Sampler) instrument. All of these measurements are used for comparison 10 with TOMCAT/SLIMCAT 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL. Potential changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in inter-comparisons of measured and modeled CH4 and O3. After accounting for some minor deficiencies in the details of the modeled vertical transport, excellent agreement is achieved among measured and simulated CH4 and O3, indicating that in the subtropical LS and TTL O3 concentrations mostly vary due to dynamical rather than photochemical processes. The TOMCAT/SLIMCAT simulations are further used for the interpretation of the measured NO2 and BrO. In excellent agreement with the model predictions, NO2 concentrations are found to range between 70–170 ppt in the subtropical LS, and in the TTL they are close to, or below the detection limit of 15 ppt in daytime. The measured BrO concentrations range between 3–9 ppt in the subtropical LS, and in the TTL they reach 0.5 ± 0.5 ppt at the bottom of the TTL (150 hPa/355 K/14 km) and up to about 5 ppt at the top of the TTL (70 hPa/425 K/18.5 km, for the TTL definition see Fueglistaler et al. (2009)), in overall good agreement with the model simulation, and the expectation based on the destruction of brominated source gases. The TOMCAT/SLIMCAT simulations tend to slightly under-predict measured BrO depending on the photochemical regime studied, even when constrained to the measured O3 and NO2, and adjusted to match the observed concentrations of some key brominated source gases. The measured BrO and modeled BrO / Brinorgy ratio is further used to calculate inorganic bromine, Brinorgy. For the TTL (i.e. when [CH4] ± 1390 ppb), Brinorgy is found to increase from a mean of 2.63 ± 1.04 ppt for ± in the range of 350–360 K to 5.11 ± 1.57 ppt for θ = 390 to 400 K, whereas in the subtropical LS (i.e. when [CH4] ± 1390 ppb),it reaches 7.66 ± 2.95 ppt for theta in the range of 390–400 K. Finally, the TOMCAT/SLIMCAT simulations indicate a net destruction of ozone of −0.5 ppbv/day at the base of the TTL (θ = 355 K) and a net production of +1.8 ppbv/day at its top (θ = 383 K).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2016-02-10
    Description: We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m−3, model: 1.51 ± 0.08 ng m−3), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) were below the instrument's detection limit (detection limit per flight: 58–228 pg m−3), consistent with model-calculated Hg(II) concentrations of 0–196 pg m−3. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 pg m−3, model: 67 ± 44 pg m−3). The highest Hg(II) concentrations, 300–680 pg m−3, were observed in dry (RH  
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...