ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-28
    Description: A variety of key events in apoptosis focus on mitochondria, including the release of caspase activators (such as cytochrome c), changes in electron transport, loss of mitochondrial transmembrane potential, altered cellular oxidation-reduction, and participation of pro- and antiapoptotic Bcl-2 family proteins. The different signals that converge on mitochondria to trigger or inhibit these events and their downstream effects delineate several major pathways in physiological cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, D R -- Reed, J C -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721092" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cysteine Endopeptidases/metabolism ; Cytochrome c Group/metabolism ; Electron Transport ; Humans ; Intracellular Membranes/metabolism ; Ion Channels/metabolism ; Membrane Potentials ; Mitochondria/*metabolism ; Oxidation-Reduction ; Permeability ; Proto-Oncogene Proteins c-bcl-2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-04-09
    Description: The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H G -- Pathan, N -- Ethell, I M -- Krajewski, S -- Yamaguchi, Y -- Shibasaki, F -- McKeon, F -- Bobo, T -- Franke, T F -- Reed, J C -- AG-1593/AG/NIA NIH HHS/ -- CA-69381/CA/NCI NIH HHS/ -- HD25938/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195903" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Animals ; *Apoptosis ; Calcineurin/genetics/*metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism/pharmacology ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Dimerization ; Enzyme Inhibitors/pharmacology ; Glutamic Acid/pharmacology ; Hippocampus/cytology ; Humans ; Mitochondria/metabolism ; Neurons/cytology/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Transfection ; *Tyrosine 3-Monooxygenase ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-08-19
    Description: TR3, an immediate-early response gene and an orphan member of the steroid-thyroid hormone-retinoid receptor superfamily of transcription factors, regulates apoptosis through an unknown mechanism. In response to apoptotic stimuli, TR3 translocates from the nucleus to mitochondria to induce cytochrome c release and apoptosis. Mitochondrial targeting of TR3, but not its DNA binding and transactivation, is essential for its proapoptotic effect. Our results reveal a mechanism by which a nuclear transcription factor translocates to mitochondria to initiate apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Kolluri, S K -- Gu, J -- Dawson, M I -- Cao, X -- Hobbs, P D -- Lin, B -- Chen, G -- Lu, J -- Lin, F -- Xie, Z -- Fontana, J A -- Reed, J C -- Zhang, X -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1159-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947977" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Cell Fractionation ; Cell Nucleus/metabolism ; Cytochrome c Group/*metabolism ; DNA/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Genes, Reporter ; Humans ; Intracellular Membranes/metabolism/physiology ; Mitochondria/*metabolism ; Mutation ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-11-13
    Description: Caspases are intracellular proteases that function as initiators and effectors of apoptosis. The kinase Akt and p21-Ras, an Akt activator, induced phosphorylation of pro-caspase-9 (pro-Casp9) in cells. Cytochrome c-induced proteolytic processing of pro-Casp9 was defective in cytosolic extracts from cells expressing either active Ras or Akt. Akt phosphorylated recombinant Casp9 in vitro on serine-196 and inhibited its protease activity. Mutant pro-Casp9(Ser196Ala) was resistant to Akt-mediated phosphorylation and inhibition in vitro and in cells, resulting in Akt-resistant induction of apoptosis. Thus, caspases can be directly regulated by protein phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardone, M H -- Roy, N -- Stennicke, H R -- Salvesen, G S -- Franke, T F -- Stanbridge, E -- Frisch, S -- Reed, J C -- CA-69381/CA/NCI NIH HHS/ -- CA-69515/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1318-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program on Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812896" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Caspase 9 ; Caspase Inhibitors ; Caspases/*metabolism ; Cell Line ; Cytochrome c Group/pharmacology ; Enzyme Precursors/metabolism ; Humans ; Mass Spectrometry ; Mutation ; Peptide Fragments/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins p21(ras)/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-09-25
    Description: The proapoptotic Bax protein induces cell death by acting on mitochondria. Bax binds to the permeability transition pore complex (PTPC), a composite proteaceous channel that is involved in the regulation of mitochondrial membrane permeability. Immunodepletion of Bax from PTPC or purification of PTPC from Bax-deficient mice yielded a PTPC that could not permeabilize membranes in response to atractyloside, a proapoptotic ligand of the adenine nucleotide translocator (ANT). Bax and ANT coimmunoprecipitated and interacted in the yeast two-hybrid system. Ectopic expression of Bax induced cell death in wild-type but not in ANT-deficient yeast. Recombinant Bax and purified ANT, but neither of them alone, efficiently formed atractyloside-responsive channels in artificial membranes. Hence, the proapoptotic molecule Bax and the constitutive mitochondrial protein ANT cooperate within the PTPC to increase mitochondrial membrane permeability and to trigger cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marzo, I -- Brenner, C -- Zamzami, N -- Jurgensmeier, J M -- Susin, S A -- Vieira, H L -- Prevost, M C -- Xie, Z -- Matsuyama, S -- Reed, J C -- Kroemer, G -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):2027-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, UPR 420, 19 rue Guy Moquet, F-94801 Villejuif, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9748162" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Atractyloside/metabolism/pharmacology ; Binding Sites ; Bongkrekic Acid/metabolism/pharmacology ; Cyclosporine/pharmacology ; Dimerization ; HT29 Cells ; Humans ; Intracellular Membranes/physiology ; Liposomes ; Mice ; Mice, Inbred C57BL ; Mitochondria/*physiology ; Mitochondrial ADP, ATP Translocases/chemistry/*metabolism ; Permeability ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism/pharmacology ; Proto-Oncogene Proteins c-bcl-2/pharmacology ; Rats ; Rats, Wistar ; Recombinant Proteins/pharmacology ; Saccharomyces cerevisiae/cytology/genetics ; Transfection ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-11-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reed, John C -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1075-6. doi: 10.1126/science.1215568.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA. jreed@sanfordburnham.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116875" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*therapeutic use ; *Apoptosis ; Female ; Humans ; Male ; Mitochondria/*physiology ; Neoplasms/*drug therapy/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-22
    Description: The NLR (nucleotide binding and oligomerization, leucine-rich repeat) family of proteins senses microbial infections and activates the inflammasome, a multiprotein complex that promotes microbial clearance. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. We found that KSHV Orf63 is a viral homolog of human NLRP1. Orf63 blocked NLRP1-dependent innate immune responses, including caspase-1 activation and processing of interleukins IL-1beta and IL-18. KSHV Orf63 interacted with NLRP1, NLRP3, and NOD2. Inhibition of Orf63 expression resulted in increased expression of IL-1beta during the KSHV life cycle. Furthermore, inhibition of NLRP1 was necessary for efficient reactivation and generation of progeny virus. The viral homolog subverts the function of cellular NLRs, which suggests that modulation of NLR-mediated innate immunity is important for the lifelong persistence of herpesviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregory, Sean M -- Davis, Beckley K -- West, John A -- Taxman, Debra J -- Matsuzawa, Shu-ichi -- Reed, John C -- Ting, Jenny P Y -- Damania, Blossom -- 5R21CA131645/CA/NCI NIH HHS/ -- AI057157/AI/NIAID NIH HHS/ -- AI077437/AI/NIAID NIH HHS/ -- AI56324/AI/NIAID NIH HHS/ -- AI91967/AI/NIAID NIH HHS/ -- CA096500/CA/NCI NIH HHS/ -- CA156330/CA/NCI NIH HHS/ -- DE018281/DE/NIDCR NIH HHS/ -- F32-AI78735/AI/NIAID NIH HHS/ -- R01 AI091967/AI/NIAID NIH HHS/ -- R01 CA096500/CA/NCI NIH HHS/ -- R01 CA096500-10/CA/NCI NIH HHS/ -- R01 DE018281/DE/NIDCR NIH HHS/ -- R01 DE018281-05/DE/NIDCR NIH HHS/ -- T32-AI007001/AI/NIAID NIH HHS/ -- T32-AI007419/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):330-4. doi: 10.1126/science.1199478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252346" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Apoptosis ; Apoptosis Regulatory Proteins/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Carrier Proteins/metabolism ; Caspase 1/metabolism ; Caspase Inhibitors ; Cell Line ; Cell Line, Tumor ; Herpesvirus 8, Human/genetics/immunology/*physiology ; Humans ; *Immune Evasion ; *Immunity, Innate ; Inflammasomes/*antagonists & inhibitors/metabolism ; Interleukin-1beta/metabolism ; Molecular Sequence Data ; Monocytes/virology ; Nod2 Signaling Adaptor Protein/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Transfection ; Viral Proteins/chemistry/genetics/*metabolism ; Virus Activation ; Virus Latency ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-02-14
    Description: Cancers of the microsatellite mutator phenotype (MMP) show exaggerated genomic instability at simple repeat sequences. More than 50 percent (21 out of 41) of human MMP+ colon adenocarcinomas examined were found to have frameshift mutations in a tract of eight deoxyguanosines [(G)8] within BAX, a gene that promotes apoptosis. These mutations were absent in MMP- tumors and were significantly less frequent in (G)8 repeats from other genes. Frameshift mutations were present in both BAX alleles in some MMP+ colon tumor cell lines and in primary tumors. These results suggest that inactivating BAX mutations are selected for during the progression of colorectal MMP+ tumors and that the wild-type BAX gene plays a suppressor role in a p53-independent pathway for colorectal carcinogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rampino, N -- Yamamoto, H -- Ionov, Y -- Li, Y -- Sawai, H -- Reed, J C -- Perucho, M -- CA38579/CA/NCI NIH HHS/ -- CA63585/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):967-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, La Jolla Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020077" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*genetics ; Alleles ; Apoptosis ; Base Sequence ; Colonic Neoplasms/*genetics ; *Frameshift Mutation ; Gene Expression ; *Genes, Tumor Suppressor ; Humans ; Microsatellite Repeats/*genetics ; Molecular Sequence Data ; Mutation ; Phenotype ; Polymerase Chain Reaction ; Proto-Oncogene Proteins/*genetics ; *Proto-Oncogene Proteins c-bcl-2 ; Sequence Deletion ; Tumor Cells, Cultured ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reed, John C -- White, E Lucile -- England -- Nature. 2011 Jun 8;474(7350):161. doi: 10.1038/474161b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21654789" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; National Institutes of Health (U.S.)/economics/*organization & administration ; Neglected Diseases/drug therapy/metabolism ; Translational Medical Research/economics/*organization & administration/trends ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-05-10
    Description: Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IkappaB kinase (IKK) complex, impacting NF-kappaB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeretssian, Garabet -- Correa, Ricardo G -- Doiron, Karine -- Fitzgerald, Patrick -- Dillon, Christopher P -- Green, Douglas R -- Reed, John C -- Saleh, Maya -- MOP 82801/Canadian Institutes of Health Research/Canada -- England -- Nature. 2011 Jun 2;474(7349):96-9. doi: 10.1038/nature09982. Epub 2011 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, McGill University, Montreal, Quebec H3G 0B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21552281" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/immunology ; BH3 Interacting Domain Death Agonist Protein/genetics/*immunology ; Colitis/genetics/immunology ; Epithelial Cells/*immunology ; HEK293 Cells ; HT29 Cells ; Humans ; I-kappa B Kinase/immunology ; Immunity, Innate/*genetics ; Inflammation/*genetics ; Intestinal Mucosa/*immunology ; Mice ; Mice, Inbred C57BL ; Nod1 Signaling Adaptor Protein/immunology ; Nod2 Signaling Adaptor Protein/immunology ; RNA Interference ; Signal Transduction/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...