ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Wind tunnel evaluations of two-dimensional high-lift airfoils and of vehicles operating in ground effect near the tunnel floor require special test facilities and procedures. These are needed to avoid errors caused by proximity to the walls and interference from the wall boundary layers. Pneumatic test techniques and facilities were developed for GTRI aerodynamic research tunnels and calibrated to verify that these wall effects had been removed. The modified facilities were then employed to evaluate the aerodynamic characteristics of blown very-high-lift airfoils and of racing hydroplanes operating in ground effect at various levels above the floor. The pneumatic facilities, techniques and calibrations are discussed and typical aerodynamic data recorded both with and without the test-section blowing systems are presented.
    Keywords: AERODYNAMICS
    Type: AGARD, Wall Interference, Support Interference and Flow Field Measurements; 11 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be predicted performance of advanced transports resulting from these devices. Suggestions will be presented for additional innovative high-payoff research leading to further confirmation of these concepts and their application to advanced efficient commercial transport aircraft.
    Keywords: Aircraft Stability and Control
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 371-397; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The flow entraining capabilities of the Circulation Control Wing high lift system were employed to provide an even stronger STOL potential when synergistically combined with upper surface mounted engines. The resulting configurations generate very high supercirculation lift in addition to a vertical component of the pneumatically deflected engine thrust. A series of small scale wind tunnel tests and full scale static thrust deflection tests are discussed which provide a sufficient data base performance. These tests results show thrust deflections of greater than 90 deg produced pneumatically by nonmoving aerodynamic surfaces, and the ability to maintain constant high lift while varying the propulsive force from high thrust recovery required for short takeoff to high drag generation required for short low speed landings.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, 1986; p 491-537
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.
    Keywords: Aerodynamics
    Type: Application of Circulation Control Technology to Airframe Noise Reduction; B-1 - B-12; GTRl-A5928/2003-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing (PCW) configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (CL values of 10 to 11). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust in terms of lift generation. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg - 45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. A preliminary design study of this pneumatic vehicle based on the two technologies integrated into a simple Pneumatic Channel Wing configuration showed very strong Super-STOL potential. This paper presents these experimental results, discusses variations in the configuration geometry under development, and addresses additional considerations to extend this integrated technology to advanced design studies of PCW-type vehicles.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1; 101-139; NASA/CP-2005-213509/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustics of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.
    Keywords: Aerodynamics
    Type: Application of Circulation Control Technology to Airframe Noise Reduction; A-1 - A-38; GTRl-A5928/2003-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. A preliminary design study of this pneumatic vehicle based on previous wind-tunnel and flight-test data for the two technologies integrated into a simple Pneumatic Channel Wing (PCW) configuration showed very strong Super-STOL potential. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (C(sub L) values of 8.5 to 9.0). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg-45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. This paper presents these experimental results, discusses variations in the configuration geometry under development, and extends this integrated technology to advanced design studies of PCW-type vehicles.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2002-2929 , 20th AIAA Applied Aerodynamics Conference; Jun 24, 2002 - Jun 26, 2002; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these experimental evaluations are presented herein, as are recommendations for further development and follow-on investigations. Also provided as an Appendix for reference are the basic results from the previous pneumatic HSCT investigations.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: An aircraft comprising a Channel Wing having blown c h - ne1 circulation control wings (CCW) for various functions. The blown channel CCW includes a channel that has a rounded or near-round trailing edge. The channel further has a trailing-edge slot that is adjacent to the rounded trailing edge of the channel. The trailing-edge slot has an inlet connected to a source of pressurized air and is capable of tangentially discharging pressurized air over the rounded trailing edge. The aircraft further has a propeller that is located in the channel and ahead of the rounded trailing edge of the channel. The propeller provides a propeller thrust exhaust stream across the channel wing to propel the aircraft through the air and to provide high lift. The pressurized air being discharged over the rounded trailing edge provides a high lift that is obtained independent of an aircraft angle of attack, thus preventing the asymmetry. separated flow, and stall experienced by the CC wing at the high angle of attack it required for high lift generation. The aircraft can further include blown outboard circulation control wings (CCW) that are synergistically connected to the blown channel CCWs. The blown outboard CCWs provide additional high lift, control thrust/drag interchange, and can provide all three aerodynamic moments when differential blowing is applied front-to-rear or left-to-right. Both the blown channel CCW and the outboard CCW also have leading-edge blowing slots to prevent flow separation or to provide aerodynamic moments for control.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2001-0666 , Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1; 497-527; NASA/CP-2005-213509/PT1|39th AIAA Aerospace Sciences Meeting and Exhibit; Jan 01, 2001 - Jan 08, 2001; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...