ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Oxford [u.a.] : Oxford Univ. Pr.
    Call number: 9/M 03.0331
    Type of Medium: Monograph available for loan
    Pages: xxiii, 500 S.
    ISBN: 0195133536
    Classification:
    Historical Geology
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 304 (1983), S. 659-660 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SEVERAL of Williamson's conclusions on Speciation in the freshwater molluscs of the Turkana Basin1 are based on assumptions which need further examination. Here we comment on some relevant research in the Koobi Fora area. Although the snail faunas collected by Williamson represent 'life and death ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 20 (1998), S. 381-407 
    ISSN: 1573-0417
    Keywords: paleolimnology ; ostracode ; paleoecology ; Great Salt Lake ; Pliocene ; Pleistocene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract This study summarizes the results of micropaleontological, sedimentological, and isotope geochemical analyses of cuttings from five deep wells drilled in the Great Salt Lake (Utah, USA). Spanning the last 5.0 million yrs, our environmental history of the Great Salt Lake distinguishes four intervals based on paleobiological and sedimentological characteristics, using a previously developed tephrochronology for age control. For most of its history, the Great Salt Lake Basin has been occupied by a mixture of marsh, shallow lacustrine and sand flat conditions. In contrast, open lake conditions, typical of the Bonneville cycles and the modern Great Salt Lake apparently have only dominated the basin for the past 0.6-0.8 Ma. The two main structural basins in the study area (the North and South Basins) experienced different lacustrine histories. Large but frequently saline lakes occupied the North Basin after about 0.6 Ma. In the South Basin, ephemeral, saline lacustrine conditions started at 2.1 Ma and developed to full lacustrine conditions at 0.3 Ma. Our paleoenvironmental interpretations are broadly consistent with the aquatic palynological records from the same wells, as well as with the prior core- and outcrop-based lines of evidence. However, the differences in lake history between the North and South Basin have not been previously recognized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 50 (1997), S. 117-131 
    ISSN: 1573-5133
    Keywords: threats ; population growth ; over-exploitation ; introductions ; eutrophication ; pollution ; fishes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The African Great Lakes are important sources of fishes and water for domestic use, are used as avenues of transport, and receive agricultural, domestic and industrial effluents and atmospheric residues. Some of these lakes have speciose fish faunas of great interest to science. The catchment areas of some of the lakes are highly populated and user conflicts have increased the demands on the lakes' resources. There have been drastic reductions in fish stocks in most of the lakes due to overfishing. Introductions of new fish species, though followed by increases in fish catches, have been accompanied by a decline and in some cases extinction of native fish species. Some of the lakes have been invaded by the water hyacinth, Eichhornia crassipes. Agricultural activities, deforestation and devegetation of the catchment areas have increased siltation, and led to loss of suitable habitats and biodiversity. There are increased nutrient inputs from agriculture, sewage and industrial discharges and combustion processes which can cause eutrophication. There are also increased threats of toxic pollution from industrial waste discharge, mining, pesticides, and oil residues and spills. Climatic changes may also affect thermal stability of the lakes. These factors threaten availability of dietary protein, clean water and biodiversity. National and international efforts are required to manage the fisheries, guide the introduction of exotics, conserve biodiversity, control the water hyacinth, control eutrophication, reduce input of contaminants and manage climate change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 141 (1986), S. 179-197 
    ISSN: 1573-5117
    Keywords: Lake Turkana ; benthic ; invertebrates ; Africa ; ostracods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The benthic environment and fauna of Lake Turkana were studied during 1978–1979 to determine distribution patterns and associations of benthic invertebrates. Lake Turkana is a large, closed-basin, alkaline lake, located in northern Kenya. Detailed environmental information is currently only available for substrate variations throughout Lake Turkana. Water chemistry and other data are currently inadequate to evaluate their effects on the distribution of Lake Turkana benthic invertebrates. Three weak faunal-substrate associations were discovered at Turkana. A littoral, soft bottom association (large standing crop) is dominated by the corixid Micronecta sp. and the ostracod Hemicypris kliei. A littoral, rocky bottom association, also with a large standing crop, is dominated by various gastropods and insects. A profundal, muddy bottom association, with a very small standing crop, is dominated by the ostracods Hemicypris intermedia and Sclerocypris cf. clavularis and several gastropod and chironomid species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-07
    Description: The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9–15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world’s largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-21
    Description: A climate/vegetation model simulates episodic wetter and drier periods at the 21,000-y precession period in eastern North Africa, the Arabian Peninsula, and the Levant over the past 140,000 y. Large orbitally forced wet/dry extremes occur during interglacial time, ∼130 to 80 ka, and conditions between these two extremes prevail during glacial time, ∼70 to 15 ka. Orbital precession causes high seasonality in Northern Hemisphere (NH) insolation at ∼125, 105, and 83 ka, with stronger and northward extended summer monsoon rains in North Africa and the Arabian Peninsula and increased winter rains in the Mediterranean Basin. The combined effects of these two seasonally distinct rainfall regimes increase vegetation and narrow the width of the Saharan–Arabian desert and semidesert zones. During the opposite phase of the precession cycle (∼115, 95, and 73 ka), NH seasonality is low, and decreased summer insolation and increased winter insolation cause monsoon and storm track rains to decrease and the width of the desert zone to increase. During glacial time (∼70 to 15 ka), forcing from large ice sheets and lowered greenhouse gas concentrations combine to increase winter Mediterranean storm track precipitation; the southward retreat of the northern limit of summer monsoon rains is relatively small, thereby limiting the expansion of deserts. The lowered greenhouse gas concentrations cause the near-equatorial zone to cool and reduce convection, causing drier climate with reduced forest cover. At most locations and times, the simulations agree with environmental observations. These changing regional patterns of climate/vegetation could have influenced the dispersal of early humans through expansions and contractions of well-watered corridors.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-03
    Description: Long paleoecological records are critical for understanding evolutionary responses to environmental forcing and unparalleled tools for elucidating the mechanisms that lead to the development of regions of high biodiversity. We use a 1.2-My record from Lake Malawi, a textbook example of biological diversification, to document how climate and tectonics have driven ecosystem and evolutionary dynamics. Before ∼800 ka, Lake Malawi was much shallower than today, with higher frequency but much lower amplitude water-level and oxygenation changes. Since ∼800 ka, the lake has experienced much larger environmental fluctuations, best explained by a punctuated, tectonically driven rise in its outlet location and level. Following the reorganization of the basin, a change in the pacing of hydroclimate variability associated with the Mid-Pleistocene Transition resulted in hydrologic change dominated by precession rather than the high-latitude teleconnections recorded elsewhere. During this time, extended, deep lake phases have abruptly alternated with times of extreme aridity and ecosystem variability. Repeated crossings of hydroclimatic thresholds within the lake system were critical for establishing the rhythm of diversification, hybridization, and extinction that dominate the modern system. The chronology of these changes closely matches both the timing and pattern of phylogenetic history inferred independently for the lake’s extraordinary array of cichlid fish species, suggesting a direct link between environmental and evolutionary dynamics.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-08
    Description: Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...