ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Vas deferens ; Seminal vesicle ; Neuopeptides ; Tyrosine hydroxylase ; Caudal mesenteric ganglion ; Retrograde tracing ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY-), TH+/NPY+, TH-/NPY-, TH-/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words: Vas deferens ; Seminal vesicle ; Neuropeptides ; Tyrosine hydroxylase ; Caudal mesenteric ganglion ; Retrograde tracing ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY−), TH+/NPY+, TH−/NPY−, TH−/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1059-910X
    Keywords: Nitric oxide ; NADPH diaphorase ; Immunocytochemistry ; Retrograde tracing ; Prevertebral ganglion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The distribution of neurons that are capable of synthesizing nitric oxide (NO) has been demonstrated in the porcine large intestine by means of NO synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. An overall colocalization of NOS immunoreactivity and NADPHd staining was observed. Nitrergic neurons were abundant in the myenteric and outer submucous plexus of the caecum, colon, and rectum. Only a few nitrergic perikarya were seen in the inner submucous plexus of the colon and caecum, whereas a substantially larger number was observed in the rectum. Nitrergic nerve fibers were present in the three ganglionic nerve plexuses. Contrary to the outer longitudinal muscle layer and the mucosal region, the circular muscle layer received a dense nitrergic innervation. The nitrergic nerve cells were variable in size and shape, and several displayed vasoactive intestinal polypeptide (VIP) immunoreactivity (IR). Retrograde tracing studies revealed the existence of nitrergic neurons that project to the caudal (inferior) mesenteric ganglion. They were observed in the myenteric and outer submucous plexus of the transverse and descending colon and the rectum. These observations strongly suggest that several subpopulations of NO-synthesizing neurons, namely, motor neurons and interneurons, should be distinguished in the porcine large intestine, thereby emphasizing the importance of NO as a biologically active mediator. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...