ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-07-01
    Beschreibung: Aims. We present the first fully relativistic study of gravitational radiation from bodies in circular equatorial orbits around the massive black hole at the Galactic center, Sgr A* and we assess the detectability of various kinds of objects by the gravitational wave detector LISA. Methods. Our computations are based on the theory of perturbations of the Kerr spacetime and take into account the Roche limit induced by tidal forces in the Kerr metric. The signal-to-noise ratio in the LISA detector, as well as the time spent in LISA band, are evaluated. We have implemented all the computational tools in an open-source SageMath package, within the Black Hole Perturbation Toolkit framework. Results. We find that white dwarfs, neutrons stars, stellar black holes, primordial black holes of mass larger than 10−4 M⊙, main-sequence stars of mass lower than ∼2.5 M⊙, and brown dwarfs orbiting Sgr A* are all detectable in one year of LISA data with a signal-to-noise ratio above 10 for at least 105 years in the slow inspiral towards either the innermost stable circular orbit (compact objects) or the Roche limit (main-sequence stars and brown dwarfs). The longest times in-band, of the order of 106 years, are achieved for primordial black holes of mass ∼10−3 M⊙ down to 10−5 M⊙, depending on the spin of Sgr A*, as well as for brown dwarfs, just followed by white dwarfs and low mass main-sequence stars. The long time in-band of these objects makes Sgr A* a valuable target for LISA. We also consider bodies on close circular orbits around the massive black hole in the nucleus of the nearby galaxy M 32 and find that, among them, compact objects and brown dwarfs stay for 103–104 years in LISA band with a one-year signal-to-noise ratio above ten.
    Print ISSN: 0004-6361
    Digitale ISSN: 1432-0746
    Thema: Physik
    Publiziert von EDP Sciences
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...