ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-04-01
    Description: Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...