ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1986-01-01
    Description: The snow-pack on the Arctic Coastal Plain of Alaska has a well-developed depth-hoar layer which forms each year at the base of the snow-pack due to upward vapor transfer resulting from a temperature gradient in the snow-pack. The thickness of the depth-hoar layer tends to increase inland where greater temperature extremes (in particular, lower minimum temperatures) permit larger temperature gradients to develop within the snow-pack. Brightness temperature (TB) data were analyzed from October through May for four winters using the 37 GHz horizontally polarized Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR). By mid-winter each year, a decrease inTBof approximately 20K was found between coastal and inland sites on the Arctic Coastal Plain of Alaska. Modeling has indicated that a thicker depth-hoar layer in the inland sites could be responsible for the lowerTBs. The large grain-sizes of the depth-hoar crystals scatter the upwelling radiation moreso than do smaller crystals, and greater scattering lowers the microwaveTB. Using a two-layered radiative transfer model, the crystal diameter in the top layer was assumed to be 0.50 mm. The crystals in the depth-hoar layer may be 5–10 mm in diameter but the effective crystal diameter used in the radiative-transfer model is 1.40 mm. The crystal size used in the model had to be adjusted downward, relative to the actual crystal size, because the hollow, cup-shaped depth-hoar crystals are not as effective at scattering the microwave radiation as are spherical crystals that are assumed in the model. In the model, when the thickness of the depth-hoar layer was increased from 5 cm to 10 cm, a 21K decrease inTBresulted. This is comparable to the decrease inTBobserved from coastal to inland sites in the study area.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...