ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-01
    Description: Generation of ocean surface boundary layer turbulence and coherent roll structures is examined in the context of wind-driven and geostrophic shear associated with horizontal density gradients using a large-eddy simulation model. Numerical experiments over a range of surface wind forcing and horizontal density gradient strengths, combined with linear stability analysis, indicate that the dominant instability mechanism supporting coherent roll development in these simulations is a mixed instability combining shear instability of the ageostrophic, wind-driven flow with symmetric instability of the frontal geostrophic shear. Disruption of geostrophic balance by vertical mixing induces an inertially rotating ageostrophic current, not forced directly by the wind, that initially strengthens the stratification, damps the instabilities, and reduces vertical mixing, but instability and mixing return when the inertial buoyancy advection reverses. The resulting rolls and instabilities are not aligned with the frontal zone, with an oblique orientation controlled by the Ekman-like instability. Mean turbulence is enhanced when the winds are destabilizing relative to the frontal orientation, but mean Ekman buoyancy advection is found to be relatively unimportant in these simulations. Instead, the mean turbulent kinetic energy balance is dominated by mechanical shear production that is enhanced when the wind-driven shear augments the geostrophic shear, while the resulting vertical mixing nearly eliminates any effective surface buoyancy flux from near-surface, cold-to-warm, Ekman buoyancy advection.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...