ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-15
    Description: Climate change over the last several decades is suggested to cause a decrease in the magnitude of the uptake of CO2 by the Southern Ocean (Le Quere et al.). In this study, the atmospheric fields from NCEP R1 for the years 1948–2003 are used to drive an ocean biogeochemical model to probe how changes in the heat and freshwater fluxes and in the winds affect the Southern Ocean’s uptake of carbon. Over this period, the model simulations herein show that the increases in heat and freshwater fluxes drive a net increase in Southern Ocean uptake (south of 40°S) while the increases in wind stresses drive a net decrease in uptake. The total Southern Ocean response is nearly identical with the simulation without climate change because the heat and freshwater flux response is approximately both equal and opposite to the wind stress response. It is also shown that any change in the Southern Ocean anthropogenic carbon uptake is always opposed by a much larger change in the natural carbon air–sea exchange. For the 1948–2003 period, the changes in the natural carbon cycle dominate the Southern Ocean carbon uptake response to climate change. However, it is shown with a simple box model that when atmospheric CO2 levels exceed the partial pressure of carbon dioxide (pCO2) of the upwelled Circumpolar Deep Water (≈450 μatm) the Southern Ocean uptake response will be dominated by the changes in anthropogenic carbon uptake. Therefore, the suggestion that the Southern Ocean carbon uptake is a positive feedback to global warming is only a transient response that will change to a negative feedback in the near future if the present climate trend continues. Associated with the increased outgassing of carbon from the natural carbon cycle was a reduction in the aragonite saturation state of the high-latitude Southern Ocean (south of 60°S). In the simulation with just wind stress changes, the reduction in the high-latitude Southern Ocean aragonite saturation state (≈0.2) was comparable to the magnitude of the decline in the aragonite saturation state over the last 4 decades because of rising atmospheric CO2 levels (≈0.2). The simulation showed that climate change could significantly impact aragonite saturation state in the Southern Ocean.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...