ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-20
    Description: In data sparse regions, as in many mountainous catchments, it is a challenge to generate suitable precipitation input fields for hydrological modelling, as station data do not provide enough information to derive areal precipitation estimates. This study presents a method using the spatial variation of precipitation from downscaled reanalysis data for the interpolation of gauge observations. The second aim of this study is the evaluation of different precipitation estimates by hydrological modelling. Study area is the Karadarya catchment in Central Asia (11 700 km2). ERA-40 reanalysis data are downscaled with the regional climate model Weather Research and Forecasting Model (WRF). Precipitation data from gauge observations are interpolated (i) using monthly accumulated WRF precipitation data, (ii) using monthly fields from multiple linear regression against topographical variables and (iii) with the inverse distance approach. These precipitation data sets are also compared to (iv) the direct use of the precipitation output from the WRF downscaled ERA-40 data and (v) precipitation from the APHRODITE data set. Our study suggests that using monthly fields from downscaled reanalysis data can be a good approach for the interpolation of station data in data sparse mountainous regions. Compared to mean annual precipitation from continental and global scale gridded data sets our precipitation estimates for the study area are considerably higher. The introduction of a calibrated precipitation bias factor for the comparison of different precipitation estimates by hydrological modelling allows for a more informed differentiation with regard to the temporal dynamics, on the one hand, and the overall bias, on the other hand. Uncertainty and sensitivity analyses suggest that our results are robust against uncertainties in the calibration parameters, other model parameters and inputs, and the selected calibration period.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...