ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-11-14
    Description: Biodiversity is one of the key mechanisms that facilitate the adaptive response of planktonic communities to a fluctuating environment. How to allow for such a flexible response in marine ecosystem models is, however, not entirely clear. One particular way is to resolve the natural complexity of phytoplankton communities by explicitly incorporating a large number of species or plankton functional types. Alternatively, models of aggregate community properties focus on macroecological quantities such as total biomass, mean trait, and trait variance (or functional trait diversity), thus reducing the observed natural complexity to a few mathematical expressions. We developed the PhytoSFDM modelling tool, which can resolve species discretely and can capture aggregate community properties. The tool also provides a set of methods for treating diversity under realistic oceanographic settings. This model is coded in Python and is distributed as open-source software. PhytoSFDM is implemented in a zero-dimensional physical scheme and can be applied to any location of the global ocean. We show that aggregate community models reduce computational complexity while preserving relevant macroecological features of phytoplankton communities. Compared to species-explicit models, aggregate models are more manageable in terms of number of equations and have faster computational times. Further developments of this tool should address the caveats associated with the assumptions of aggregate community models and about implementations into spatially resolved physical settings (one-dimensional and three-dimensional). With PhytoSFDM we embrace the idea of promoting open-source software and encourage scientists to build on this modelling tool to further improve our understanding of the role that biodiversity plays in shaping marine ecosystems.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...