ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-11
    Description: The measurement of elements in PM10 was performed with 1 h time resolution at a rural freeway site during summer 2015 in Switzerland using the Xact1 625 Ambient Metals Monitor. On average the Xact elements (without accounting for oxygen and other associated elements) make up about 20 % of the total PM10 mass (14.6 µg m−3). We conducted source apportionment by positive matrix factorisation (PMF) of the elemental mass measurable by the Xact (i.e. major elements heavier than Al), defined here as PM10el. Eight different sources were identified in PM10el (elemental PM10) mass driven by the sum of 14 elements (notable elements in brackets): Fireworks-I (K, S, Ba and Cl), Fireworks-II (K), sea salt (Cl), secondary sulfate (S), background dust (Si, Ti), road dust (Ca), non-exhaust traffic-related elements (Fe) and industrial elements (Zn and Pb). The major components were secondary sulfate and non-exhaust traffic-related elements followed by background dust and road dust factors, explaining 21 %, 20 %, 18 % and 16 % of the analysed PM10 elemental mass, respectively, with the factor mass not corrected for oxygen content. Further, there were minor contributions (on the order of a few percent) of sea salt and industrial sources. The regionally influenced secondary sulfate factor showed negligible resuspension, and concentrations were similar throughout the day. The significant loads of the non-exhaust traffic-related and road dust factors with strong diurnal variations highlight the continuing importance of vehicle-related air pollutants at this site. Enhanced control of PMF implemented via the SourceFinder software (SoFi Pro version 6.2, PSI, Switzerland) allowed for a successful apportionment of transient sources such as the two firework factors and sea salt, which remained mixed when analysed by unconstrained PMF.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...