ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-14
    Description: In the central Taupo Volcanic Zone, extensive zeolite (mordenite ± clinoptilolite) alteration occurs in late Quaternary rhyolitic vitric tuffs that were deposited in a lake formed by caldera collapse following the ~290 Ka Ohakuri ignimbrite eruptions. Glass shards in lacustrine vitric tuffs of the Ngakuru Formation and in the underlying Ohakuri Formation ignimbrite are replaced by mordenite ± clinoptilolite, along with hydrothermal adularia, opal-A, opal-CT, and cristobalite. This mineral assemblage is also found in the outer alteration zones of the nearby Ohakuri and Tahunaatara epithermal gold prospects. Evaluation of whole-rock chemical analyses indicates that the zeolitized vitric tuffs show a slight gain in K, and Na, Ca loss relative to unaltered Ohakuri Formation pumice, which is reflected in the presence of hydrothermal adularia in the alteration assemblage. The mordenite ± clinoptilolite alteration is associated with siliceous sinters and hydrothermal eruption breccias that were formed in recently active (39–1.5 Ka) geothermal systems. By analogy with geothermal systems elsewhere in the Taupo Volcanic Zone at Wairakei and Ohaaki, the mordenite ± clinoptilolite alteration was formed from dilute alkali-chloride aqueous liquid at 60° to 150°C. Based on the close association of the mordenite ± clinoptilolite alteration with siliceous sinters and hydrothermal eruption breccias in the central Taupo Volcanic Zone, it is classified as shallow, low-temperature, epithermal alteration. Mordenite ± clinoptilolite alteration has also been identified in Quaternary rhyolitic caldera settings in Japan and the United States, where it is termed “caldera-type zeolitization.” In exploration for epithermal Au-Ag deposits in rifted arc settings, such alteration may be overlooked, given its subtle appearance and distal location relative to veins that mark upflow areas.
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...