ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-08-01
    Description: Scientists at NOAA's Hurricane Research Division recently analyzed the inner-core upper-ocean environment for 23 Atlantic, Gulf of Mexico, and Caribbean hurricanes between 1975 and 2002. The interstorm variability of sea surface temperature (SST) change between the hurricane inner-core environment and the ambient ocean environment ahead of the storm is documented using airborne expendable bathythermograph (AXBT) observations and buoy-derived archived SST data. The authors demonstrate that differences between inner-core and ambient SST are much less than poststorm, “cold wake” SST reductions typically observed (i.e., ∼0°–2°C versus 4°–5°C). These findings help define a realistic parameter space for storm-induced SST change within the important high-wind inner-core hurricane environment. Results from a recent observational study yielded estimates of upper-ocean heat content, upper-ocean energy extracted by the storm, and upper-ocean energy utilization for a wide range of tropical systems. Results from this analysis show that, under most circumstances, the energy available to the tropical cyclone is at least an order of magnitude greater than the energy extracted by the storm. This study also highlights the significant impact that changes in inner-core SST have on the magnitude of air–sea fluxes under high-wind conditions. Results from this study illustrate that relatively modest changes in inner-core SST (order 1°C) can effectively alter maximum total enthalpy (sensible plus latent heat) flux by 40% or more. The magnitude of SST change (ambient minus inner core) was statistically linked to subsequent changes in storm intensity for the 23 hurricanes included in this research. These findings suggest a relationship between reduced inner-core SST cooling (i.e., increased inner-core surface enthalpy flux) and tropical cyclone intensification. Similar results were not found when changes in storm intensity were compared with ambient SST or upper-ocean heat content conditions ahead of the storm. Under certain circumstances, the variability associated with inner-core SST change appears to be an important factor directly linked to the intensity change process.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...