ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-13
    Description: This paper is devoted to the mathematical and numerical analysis of a model describing the interfacial flow-transport interaction in a porous-fluidic domain. The medium consists of a highly permeable material, where the flow of an incompressible viscous fluid is governed by Brinkman equations (written in terms of vorticity, velocity and pressure), and a porous medium where Darcy’s law describes fluid motion using filtration velocity and pressure. Gravity and the local fluctuations of a scalar field (representing for instance, the solids volume fraction or the concentration of a contaminant) are the main drivers of the fluid patterns on the whole domain, and the Brinkman-Darcy equations are coupled to a nonlinear transport equation accounting for mass balance of the scalar concentration. We introduce a mixed-primal variational formulation of the problem and establish existence and uniqueness of solution using fixed-point arguments and small-data assumptions. A family of Galerkin discretizations that produce divergence-free discrete velocities is also presented and analysed using similar tools to those employed in the continuous problem. Convergence of the resulting mixed-primal finite element method is proven, and some numerical examples confirming the theoretical error bounds and illustrating the performance of the proposed discrete scheme are reported.
    Print ISSN: 0272-4979
    Electronic ISSN: 1464-3642
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...