ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-01
    Description: We describe progress in developing a novel miniaturized laser-heated “microfurnace” aimed at preparing ultra-small (∼5 μg) graphite samples from CO2 (Smith et al. 2006, 2007, 2010). Recent effort has focused on automation of the process using a LabVIEW interface, which has permitted feedback control of the catalyst temperature as the reaction proceeds and the logging of reaction parameters. We trialed a number of different pure iron catalysts as well as Fe2O3 (which is reduced in situ to iron) and discuss the reaction rates. We studied the graphite morphology by scanning electron microscopy (SEM) and found there is a marked difference in graphite morphology with catalyst type. We assessed how each catalyst performs in the cesium sputter ion source of the ANTARES Accelerator Mass Spectrometry (AMS) facility. We utilized a quadrupole mass spectrometer to study the gas composition during the reaction, in order to better understand the underlying chemical reactions for such small samples and to better estimate the overall efficiency of the process. Results show that all CO2 is converted to CO by reduction on the iron catalyst within a few minutes of applying laser power. The reaction pressure stabilizes after 40 min; however, some CO is not converted to graphite. The cold trap temperature of –80 ° is effective at trapping H2O, so there is little CH4 production.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...