ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-06
    Description: Bruton tyrosine kinase (BTK) is critical to both normal B-cell development and the pathogenesis of B-cell malignancies. Ibrutinib is a recently FDA-approved small molecule irreversible inhibitor of BTK. In Phase II studies of single-agent ibrutinib in MCL (Wang ML et al, NEJM 2013) and CLL (Byrd JC, et al, NEJM 2013) the overall response rate was 68% and 89% (CR, PR, and PR with lymphocytosis), respectively, with PR as the best response in the majority of patients. Thus, not all patients respond and complete responses are infrequent with single agent ibrutinib. We previously reported that the BCL2 inhibitor, ABT-199, and the proteasome inhibitor, carfilzomib, were highly synergistic with ibrutinib in MCL cell lines using a focused drug panel (Axelrod M et al, Leukemia 2014). We sought to confirm these findings in MCL and CLL patient samples and to determine the mechanisms of synergy. Peripheral blood buffy coat samples from patients with circulating tumor cells were exposed to ibrutinib, ABT-199, carfilzomib and the combinations of ibrutinib and ABT-199 and ibrutinib and carfilzomib at pharmacologically-achievable doses for 72 hours. Apoptosis was assessed using PARP cleavage by FACS analysis of CD3-, CD5+, CD19+ cells representing the neoplastic clones. The combination of Ibrutinib and ABT-199 substantially induced apoptosis compared to each single agent alone (combo: 23%, ibrutinib: 3.8%, ABT-199: 3.0%). Ibrutinib plus carfilzomib also substantially induced apoptosis compared to each single agent alone (combo: 5.5%, Ibrutinib 3.8%, carfilzomib 1.7%) though to a less degree than the ABT-199 combination. The normal B-cell population (CD3-, CD5-, CD19+) in these samples was too small for analysis, thus normal T-cells (CD3+, CD5+, CD19-) from the same patients were used to identify the effects on normal lymphocytes. Minimal apoptosis was seen in normal T-cells with the single agents or the combinations. In a cohort of CLL and normal donor samples, heterogeneity in response to the combination of ibrutinib and ABT-199 was seen. When evaluated by Bliss modeling, 5 of 9 CLL samples had a synergistic improvement in apoptosis with the combination with the other 4 having no change. No increased apoptosis was seen in two tested peripheral blood lymphocyte (CD3-, CD5-, CD19+) populations from healthy donors. Gene expression profiling with Illumina Bead Chip array was used to evaluate the mechanisms of synergy with ABT-199 plus ibrutinib after 6 hours of drug exposure. The MCL cell line JVM2 was exposed to pharmacologically-achievable doses of ibrutinib, ABT-199 and combinations of each dose. Ibrutinib alone induced transcriptional change whereas ABT-199 did little to change gene expression. The combination induced both potentiative transcriptional changes (changes present in isolation and enhanced by the combination) and emergent transcriptional changes (changes only seen with the combination, unchanged by each single agent). Protein-protein interaction networks generated using the drug targets (BTK and BCL2) and emergent genes as input to STRING revealed activation of apoptosis via p53 and BIM as mechanisms of synergy. In conclusion, Ibrutinib and ABT-199 induce synergistic apoptosis in MCL cell lines and leukemic patient samples. The combination also induced apoptosis in some, but not all, CLL patient samples. No apoptosis was seen with either drug or the combination in normal T-cells from patients, suggesting little off-target effect. Emergent changes were seen when combining ABT-199 with ibrutinib in MCL cell lines. These changes suggest activation of p53 and BIM as potential mechanisms of synergy. A clinical trial with ABT-199 and ibrutinib is planned. Disclosures Off Label Use: Pre-clinical data with ABT-199 for MCL and CLL, not FDA approved. Williams:Pharmacyclics, Janssen: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...