ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-16
    Description: During accretion, nitrogen was distributed between metal melt, silicate melt, and the atmosphere and today's N deficit of bulk silicate Earth with respect to chondrites may be due to segregation into the core and/or atmospheric losses. To examine the former, we experimentally determined N solubilities in Fe-dominated metal melts at 1200–1800 °C, 0.4–9.0 GPa. Results show that pressure has a strong positive influence on N solubility, increasing from 1.0 to 7.4 wt% at 1–9 GPa (1400 °C) while temperature has the inverse effect, N solubility decreasing from 1.3 to 0.6 wt% at 1200–1800 °C (1 GPa). The solubility data are parameterized as function of pressure and temperature. Our results suggest that core-forming metal melts can dissolve large quantities of N, and the potential N contribution to the Earth's core density deficit could hence be much larger than previously assumed. Most importantly, N in the deep reduced mantle should be stored in the small metal fractions and not in silicates. ©2018. The Authors.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...