ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-14
    Description: Low-salinity water (LSW, Salinity 〈 37.5) lenses detached from the Rhone River plume under specific wind conditions tend to favour the biological productivity and potentially a transfer of energy to higher trophic levels on the Gulf of Lions (GoL). A field cruise conducted in May 2006 (BIOPRHOFI) followed some LSW lenses by using a lagrangian strategy. A thorough analysis of the available data set enabled to further improve our understanding of the LSW lenses' functioning and their potential influence on marine ecosystems. Through an innovative 3-D coupled hydrodynamic-biogeochemical modelling approach, a specific calibration dedicated to river plume ecosystems was then proposed and validated on field data. Exploring the role of ecosystems on the particulate organic carbon (POC) export and deposition on the shelf, a sensitivity analysis to the particulate organic matter inputs from the Rhone River was carried out from 1 April to 15 July 2006. Over such a typical end-of-spring period marked by moderate floods, the main deposition area of POC was identified alongshore between 0 and 50 m depth on the GoL, extending the Rhone prodelta to the west towards the exit of the shelf. Moreover, the main deposition area of terrestrial POC was found on the prodelta region, which confirms recent results from sediment data. The averaged daily deposition of particulate organic carbon over the whole GoL is estimated by the model between 40 and 80 mgC/m2, which is in the range of previous secular estimations. The role of ecosystems on the POC export toward sediments or offshore areas was actually highlighted and feedbacks between ecosystems and particulate organic matters are proposed to explain paradoxical model results to the sensitivity test. In fact, the conversion of organic matter in living organisms would increase the retention of organic matter in the food web and this matter transfer along the food web could explain the minor quantity of POC of marine origin observed in the shelf sediments. Thus, the effective carbon deposition on the shelf might be strongly dependent on the zooplankton presence in the GoL. Owing to their fertilizing ability in phosphorus, the LSW lenses could then have indirectly a negative impact on the carbon deposition on the shelf by favouring the development of large phytoplankton fuelling in turn zooplankton communities. The effective carbon deposition would then be delayed out of the GoL, unless a novel transfer of matter occurs toward higher trophic levels further in the open sea through small pelagic fishes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...