ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-11
    Description: An Xact 625 ambient metals monitor was tested during a three-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during summer of 2015. The objective was to characterize the handling and operation of the instrument, evaluate the data quality by intercomparison with other independent measurements, and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1-h time resolution. Hourly element concentrations ranged from a few ng m−3 for trace elements in background conditions to tens of µg m−3 for major elements during a high-emission event (fireworks). The total Xact element mass comprised approximately 20 % of the total PM10 mass. The six major elements Si, S, Cl, K, Ca, and Fe contributed 95 % to the Xact PM10 mass, the remaining 5 % were attributed to the trace elements. Data quality was evaluated by intercomparison with 24-h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. 10 elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed an excellent correlation between the compared methods, with r2 values ≥ 0.95, even though the Xact 625 yielded approximately 28 % higher elemental concentrations than ICP for these elements. These elements demonstrate the high precision of the Xact instrument. An average 28 percent difference to ICP analyses might in part be attributed to the differences in the sampling systems (inlets), the geographic distance between the inlets and between the inlets and the freeway, and to uncertainties in the different analysis methods. 10 additional elements (Cr, V, Co, Ni, As, Se, Cd, Sn, Hg, Bi) could not be compared to a reference, because their concentrations were close to or below the minimum detection limits of at least one of the analysis methods. Sb revealed a calibration issue with the Xact, which requires correction. Si, Cl and Pt were not analysed with ICP, and thus could not be evaluated. The well-quantified elements were further used for a simple investigation of sources. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. Fireworks and traffic or rural background emissions could clearly be identified with their element mixture. The results demonstrate that multi-metal characterization at high-time resolution capability of Xact is a valuable and practical tool for ambient monitoring, exhibiting significant advantages compared to traditional elemental analysis methods.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...