ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-26
    Description: A qualitative explanation for the scaling of energy dissipation by high-Reynolds-number fluid flows in contact with solid obstacles is proposed in the light of recent mathematical and numerical results. Asymptotic analysis suggests that it is governed by a fast, small-scale Rayleigh-Tollmien-Schlichting instability with an unstable range whose lower and upper bounds scale as and , respectively. By linear superposition, the unstable modes induce a boundary vorticity flux of order , a key ingredient in detachment and drag generation according to a theorem of Kato. These predictions are confirmed by numerically solving the Navier-Stokes equations in a two-dimensional periodic channel discretized using compact finite differences in the wall-normal direction, and a spectral scheme in the wall-parallel direction. © © 2018 Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited..
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...