ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-14
    Description: A toy model for the deep ocean overturning circulation in multiple basins is presented and applied to study the role of buoyancy forcing and basin geometry in the ocean’s global overturning. The model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the structure of the overturning circulation. The results highlight the importance of the diabatic component of the meridional overturning circulation (MOC) for the depth of North Atlantic Deep Water (NADW) and for the interbasin exchange of deep ocean water masses. This diabatic component, which extends the upper cell in the Atlantic below the depth of adiabatic upwelling in the Southern Ocean, is shown to be sensitive to the global area-integrated diapycnal mixing rate and the density contrast between NADW and Antarctic Bottom Water (AABW). The model also shows that the zonally averaged global overturning circulation is to zeroth-order independent of whether the ocean consists of one or multiple connected basins, but depends on the total length of the southern reentrant channel region (representing the Southern Ocean) and the global ocean area integrated diapycnal mixing. Common biases in single-basin simulations can thus be understood as a direct result of the reduced domain size.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...