ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-20
    Description: The crystal structure of squalene-hopene cyclase from Alicyclobacillus acidocaldarius was determined at 2.9 angstrom resolution. The mechanism and sequence of this cyclase are closely related to those of 2,3-oxidosqualene cyclases that catalyze the cyclization step in cholesterol biosynthesis. The structure reveals a membrane protein with membrane-binding characteristics similar to those of prostaglandin-H2 synthase, the only other reported protein of this type. The active site of the enzyme is located in a large central cavity that is of suitable size to bind squalene in its required conformation and that is lined by aromatic residues. The structure supports a mechanism in which the acid starting the reaction by protonating a carbon-carbon double bond is an aspartate that is coupled to a histidine. Numerous surface alpha helices are connected by characteristic QW-motifs (Q is glutamine and W is tryptophan) that tighten the protein structure, possibly for absorbing the reaction energy without structural damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wendt, K U -- Poralla, K -- Schulz, G E -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1811-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9295270" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillaceae/*enzymology ; Binding Sites ; Cell Membrane/enzymology ; Crystallization ; Crystallography, X-Ray ; Cyclization ; Dimerization ; Humans ; Hydrogen Bonding ; *Intramolecular Transferases ; Isomerases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Sequence Alignment ; Squalene/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...