ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-12-21
    Description: Insects have an efficient defense system against infections. Their antibacterial immune proteins have been well characterized. However, the molecular mechanisms by which insects recognize foreignness are not yet known. Data are presented showing that hemolin (previously named P4), a bacteria-inducible hemolymph protein of the giant silk moth Hyalophora cecropia, belongs to the immunoglobulin superfamily. Functional analyses indicate that hemolin is one of the first hemolymph components to bind to the bacterial surface, taking part in a protein complex formation that is likely to initiate the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, S C -- Lindstrom, I -- Boman, H G -- Faye, I -- Schmidt, O -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1729-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; DNA/genetics ; *Genes, Immunoglobulin ; Hemolymph/immunology ; Immunoglobulins ; Insect Proteins ; Molecular Sequence Data ; Moths/genetics/*immunology ; *Multigene Family ; Proteins/*genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...