ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-07-13
    Description: Numerous degenerative disorders are associated with elevated levels of prooxidants and declines in mitochondrial aconitase activity. Deficiency in the mitochondrial iron-binding protein frataxin results in diminished activity of various mitochondrial iron-sulfur proteins including aconitase. We found that aconitase can undergo reversible citrate-dependent modulation in activity in response to pro-oxidants. Frataxin interacted with aconitase in a citrate-dependent fashion, reduced the level of oxidant-induced inactivation, and converted inactive [3Fe-4S]1+ enzyme to the active [4Fe-4S]2+ form of the protein. Thus, frataxin is an iron chaperone protein that protects the aconitase [4Fe-4S]2+ cluster from disassembly and promotes enzyme reactivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bulteau, Anne-Laure -- O'Neill, Heather A -- Kennedy, Mary Claire -- Ikeda-Saito, Masao -- Isaya, Grazia -- Szweda, Luke I -- AG-15709/AG/NIA NIH HHS/ -- AG-16339/AG/NIA NIH HHS/ -- NRSA 44748/NR/NINR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):242-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247478" target="_blank"〉PubMed〈/a〉
    Keywords: Aconitate Hydratase/antagonists & inhibitors/*metabolism ; Animals ; Citric Acid/metabolism/pharmacology ; Dithiothreitol/metabolism ; Electron Spin Resonance Spectroscopy ; Enzyme Activation ; Ferrous Compounds/metabolism ; Hydrogen Peroxide/pharmacology ; Iron/*metabolism ; Iron-Binding Proteins/*metabolism ; Male ; Mitochondria/*metabolism ; Mitochondria, Heart/*metabolism ; Molecular Chaperones/*metabolism ; Oxidation-Reduction ; Oxidative Stress ; Oxygen Consumption ; Rats ; Rats, Sprague-Dawley ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...