ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-26
    Description: The ubiquitylation of cell-cycle regulatory proteins by the large multimeric anaphase-promoting complex (APC/C) controls sister chromatid segregation and the exit from mitosis. Selection of APC/C targets is achieved through recognition of destruction motifs, predominantly the destruction (D)-box and KEN (Lys-Glu-Asn)-box. Although this process is known to involve a co-activator protein (either Cdc20 or Cdh1) together with core APC/C subunits, the structural basis for substrate recognition and ubiquitylation is not understood. Here we investigate budding yeast APC/C using single-particle electron microscopy and determine a cryo-electron microscopy map of APC/C in complex with the Cdh1 co-activator protein (APC/C(Cdh1)) bound to a D-box peptide at approximately 10 A resolution. We find that a combined catalytic and substrate-recognition module is located within the central cavity of the APC/C assembled from Cdh1, Apc10--a core APC/C subunit previously implicated in substrate recognition--and the cullin domain of Apc2. Cdh1 and Apc10, identified from difference maps, create a co-receptor for the D-box following repositioning of Cdh1 towards Apc10. Using NMR spectroscopy we demonstrate specific D-box-Apc10 interactions, consistent with a role for Apc10 in directly contributing towards D-box recognition by the APC/C(Cdh1) complex. Our results rationalize the contribution of both co-activator and core APC/C subunits to D-box recognition and provide a structural framework for understanding mechanisms of substrate recognition and catalysis by the APC/C.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉da Fonseca, Paula C A -- Kong, Eric H -- Zhang, Ziguo -- Schreiber, Anne -- Williams, Mark A -- Morris, Edward P -- Barford, David -- A7403/Cancer Research UK/United Kingdom -- A8022/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Feb 10;470(7333):274-8. doi: 10.1038/nature09625. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Anaphase-Promoting Complex-Cyclosome ; Apc10 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Biocatalysis ; Cdh1 Proteins ; Cell Cycle Proteins/chemistry/*metabolism/ultrastructure ; Cryoelectron Microscopy ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Peptides/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism/ultrastructure ; Substrate Specificity ; Ubiquitin-Protein Ligase Complexes/*chemistry/*metabolism/ultrastructure ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...