ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-08-21
    Description: Finding ways to achieve higher values of the transition temperature, T(c), in superconductors remains a great challenge. The superconducting phase is often one of several competing types of electronic order, including antiferromagnetism and charge density waves. An emerging trend documented in heavy-fermion and organic conductors is that the maximum T(c) for superconductivity occurs under external conditions that cause the critical temperature for a competing order to go to zero. Recently, such competition has been found in multilayer copper oxide high-temperature superconductors (HTSCs) that possess two crystallographically inequivalent CuO(2) planes in the unit cell. However, whether the competing electronic state can be suppressed to enhance T(c) in HTSCs remains an open question. Here we show that pressure-driven phase competition leads to an unusual two-step enhancement of T(c) in optimally doped trilayer Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi2223). We find that T(c) first increases with pressure and then decreases after passing through a maximum. Unexpectedly, T(c) increases again when the pressure is further raised above a critical value of around 24 GPa, surpassing the first maximum. The presence of this critical pressure is a manifestation of the crossover from the competing order to superconductivity in the inner of the three CuO(2) planes. We suggest that the increase at higher pressures occurs as a result of competition between pairing and phase ordering in different CuO(2) planes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xiao-Jia -- Struzhkin, Viktor V -- Yu, Yong -- Goncharov, Alexander F -- Lin, Cheng-Tian -- Mao, Ho-Kwang -- Hemley, Russell J -- England -- Nature. 2010 Aug 19;466(7309):950-3. doi: 10.1038/nature09293.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA. xjchen@ciw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725035" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...