ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-08-22
    Description: Nuclear exclusion of the PTEN (phosphatase and tensin homologue deleted in chromosome 10) tumour suppressor has been associated with cancer progression. However, the mechanisms leading to this aberrant PTEN localization in human cancers are currently unknown. We have previously reported that ubiquitinylation of PTEN at specific lysine residues regulates its nuclear-cytoplasmic partitioning. Here we show that functional promyelocytic leukaemia protein (PML) nuclear bodies co-ordinate PTEN localization by opposing the action of a previously unknown PTEN-deubiquitinylating enzyme, herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), and that the integrity of this molecular framework is required for PTEN to be able to enter the nucleus. We find that PTEN is aberrantly localized in acute promyelocytic leukaemia, in which PML function is disrupted by the PML-RARalpha fusion oncoprotein. Remarkably, treatment with drugs that trigger PML-RARalpha degradation, such as all-trans retinoic acid or arsenic trioxide, restore nuclear PTEN. We demonstrate that PML opposes the activity of HAUSP towards PTEN through a mechanism involving the adaptor protein DAXX (death domain-associated protein). In support of this paradigm, we show that HAUSP is overexpressed in human prostate cancer and is associated with PTEN nuclear exclusion. Thus, our results delineate a previously unknown PML-DAXX-HAUSP molecular network controlling PTEN deubiquitinylation and trafficking, which is perturbed by oncogenic cues in human cancer, in turn defining a new deubiquitinylation-dependent model for PTEN subcellular compartmentalization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398484/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398484/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Min Sup -- Salmena, Leonardo -- Carracedo, Arkaitz -- Egia, Ainara -- Lo-Coco, Francesco -- Teruya-Feldstein, Julie -- Pandolfi, Pier Paolo -- P50 CA092629/CA/NCI NIH HHS/ -- P50 CA092629-01/CA/NCI NIH HHS/ -- R01 CA082328/CA/NCI NIH HHS/ -- England -- Nature. 2008 Oct 9;455(7214):813-7. doi: 10.1038/nature07290. Epub 2008 Aug 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18716620" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Fibroblasts ; Humans ; Leukemia, Promyelocytic, Acute/metabolism/pathology ; Male ; Mice ; Nuclear Proteins/deficiency/genetics/*metabolism ; PTEN Phosphohydrolase/*metabolism ; Prostatic Neoplasms/metabolism/pathology ; Transcription Factors/deficiency/genetics/*metabolism ; Tretinoin/pharmacology ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism ; Ubiquitin Thiolesterase/*metabolism ; *Ubiquitination ; Ubiquitins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...