ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-29
    Description: Detection of HO 2 by laser-induced fluorescence: calibration and interferences from RO 2 radicals Atmospheric Measurement Techniques, 4, 1209-1225, 2011 Author(s): H. Fuchs, B. Bohn, A. Hofzumahaus, F. Holland, K. D. Lu, S. Nehr, F. Rohrer, and A. Wahner HO 2 concentration measurements are widely accomplished by chemical conversion of HO 2 to OH including reaction with NO and subsequent detection of OH by laser-induced fluorescence. RO 2 radicals can be converted to OH via a similar radical reaction sequence including reaction with NO, so that they are potential interferences for HO 2 measurements. Here, the conversion efficiency of various RO 2 species to HO 2 is investigated. Experiments were conducted with a radical source that produces OH and HO 2 by water photolysis at 185 nm, which is frequently used for calibration of LIF instruments. The ratio of HO 2 and the sum of OH and HO 2 concentrations provided by the radical source was investigated and was found to be 0.50 ± 0.02. RO 2 radicals are produced by the reaction of various organic compounds with OH in the radical source. Interferences via chemical conversion from RO 2 radicals produced by the reaction of OH with methane and ethane (H-atom abstraction) are negligible consistent with measurements in the past. However, RO 2 radicals from OH plus alkene- and aromatic-precursors including isoprene (mainly OH-addition) are detected with a relative sensitivity larger than 80 % with respect to that for HO 2 for the configuration of the instrument with which it was operated during field campaigns. Also RO 2 from OH plus methyl vinyl ketone and methacrolein exhibit a relative detection sensitivity of 60 %. Thus, previous measurements of HO 2 radical concentrations with this instrument were biased in the presence of high RO 2 radical concentrations from isoprene, alkenes or aromatics, but were not affected by interferences in remote clean environment with no significant emissions of biogenic VOCs, when the OH reactivity was dominated by small alkanes. By reducing the NO concentration and/or the transport time between NO addition and OH detection, interference from these RO 2 species are suppressed to values below 20 % relative to the HO 2 detection sensitivity. The HO 2 conversion efficiency is also smaller by a factor of four, but this is still sufficient for atmospheric HO 2 concentration measurements for a wide range of conditions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...