ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-08
    Description: Improving intensity simulation and forecast of tropical cyclones has always been a challenge, although in recent years the track forecasts have been remarkably improved. In this study, we explore the sensitivity of typhoon simulation to three physical processes using a fully coupled atmosphere-ocean-wave model. Two storms, a strong and a weak one, have been chosen. The effects of wave breaking induced sea spray, ocean vertical mixing associated with non-breaking surface waves, and sea surface cooling due to intense rainfall are assessed by means of a set of numerical experiments. The results show and confirm that sea spray leads to an increase of typhoon intensity by enhancing the air-sea heat flux, while non-breaking wave-induced vertical mixing and rainfall lead to a decrease. Each process can be relevant, depending on wind and wave conditions. These can vary dramatically when typhoons interact with not sufficiently well-defined coastal areas, typically an archipelago. Compared with the control runs, when all the three physical processes are considered, the (absolute) difference between the modeled sea level pressure and best track data is reduced from 26.05 to 0.70 hPa for typhoon Haiyan, and from -9.42 to -8.67 hPa for typhoon Jebi. We have found a steady overestimate of the dimensions of the typhoons. We have verified an extreme sensitivity to the initial conditions, especially when small differences in the typhoon track may imply different relevance of the physical processes, like the ones we have considered, governing the evolution of the storm. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...