ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-15
    Description: The strongest transitions of Zn and Cr ii are the most sensitive to relative variations in the fine-structure constant (α/α) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 Å of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of α/α: long-range distortions of the wavelength calibration. While Zn and Cr ii absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of nine rare systems where it is strong enough to constrain α/α from these species alone. These provide 12 independent measurements (three quasars were observed with both telescopes) at redshifts 1.0–2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with α/α = 0 within their individual uncertainties of 3.5–13 parts per million (ppm), with a weighted mean α/α = 0.4 ± 1.4 stat ± 0.9 sys  ppm (1 statistical and systematic uncertainties), indicating no significant cosmological variations in α. This is the first statistical sample of absorbers that is resistant to long-range calibration distortions (at the 〈1 ppm level), with a precision comparable to previous large samples of ~150 (distortion-affected) absorbers. Our systematic error budget is instead dominated by much shorter range distortions repeated across echelle orders of individual spectra.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...