ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-28
    Description: We use the evolutionary population synthesis method to investigate the statistical properties of the wind-fed neutron-star (NS) compact ( P orb 〈 10 d) high-mass X-ray binaries (HMXBs) in our Galaxy, based on different spin-down models. Model 1 assumes that the surrounding material is treated as forming a quasi-static atmosphere. Model 2 assumes that the characteristic velocity of matter and the typical Alfvén velocity of material in the magnetospheric boundary layer are comparable to the sound speed in the external medium. We find that the spin-down rate in the supersonic propeller phase in either model 1 or model 2 is too low to produce the observed number of compact HMXBs. Model 3 assumes that the infalling material is ejected with the corotation velocity at the magnetospheric radius when the magnetospheric radius is larger than the corotation radius. Model 4 uses simple integration of the magnetic torque over the magnetosphere. Both models 3 and 4 have a larger spin down rate than that given by model 1 or 2. We also find that models 3 and 4 can predict a reasonable number of observed wind-fed NS compact HMXBs. By comparing our calculated results with the observed particular distributions of wind-fed NS compact HMXBs in a P s versus P orb diagram, we find that the subsonic propeller phase may not exist at all. However, the spin-down rates in models 3 and 4 both seem reasonable to produce the observed distribution of wind-fed NS compact HMXBs in the P s versus P orb diagram. We cannot find which spin-down rate seems more reasonable from our calculations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...