ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-14
    Description: A full-wave analysis of the fundamental quasi-TEM modes supported by multiple graphene nanoribbons above a ground plane is presented, aimed at characterizing crosstalk in graphene multiconductor lines. A method-of-moments discretization of the relevant electric-field integral equation is performed. Assuming first a local scalar conductivity, an efficient spatial-domain approach with subsectional basis functions is assuming first a local scalar conductivity, a spatial-domain approach with subsectional basis functions is developed. This allows for the efficient treatment of nanoribbons with wide transverse separations, and can be expanded to include in the simulation model spatial nonuniformity of the graphene conductivity. This spatial-domain formulation is then extended to treat the case of weakly nonlocal conductivity, via an original integro-differential approach derived by approximating a recent full spectral graphene conductivity model in the limit of low wavenumbers. Numerical results are provided for propagation constants and characteristic impedances of two identical coupled graphene nanoribbons; on this basis, a crosstalk analysis is performed by means of the modal decomposition method.
    Print ISSN: 0018-9375
    Electronic ISSN: 1558-187X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...