ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-11
    Description: Photo-thermo-refractive (PTR) glasses are the class of polyfunctional materials that combine the properties of several monofunctional materials such as photo-refractive, laser, luminescent, and plasmonic ones. Based on PTR glasses, various diffractive holographic elements and photonic devices were developed in both the volume and fiber versions. In this paper, the fabrication of optical planar waveguides on PTR glass by low-temperature ion exchange is reported for the first time. Planar waveguides were fabricated through substituting the sodium ions in glass by silver, potassium, rubidium, and cesium ones from the nitrate melts. The silver waveguides were shown to have the largest depth (27 μm) and reveal no birefringence. For the silver waveguides, an increase in the refractive index is caused by differences in the polarizabilities of cations exchanged. The maximum increment of the refractive index was observed in the cesium waveguides (0.0512). An increase in the refractive index and also appearing the birefringence in potassium, rubidium, and cesium waveguides are found to be due to the compressive mechanical stresses and their relaxation. The potentialities of the ion exchange technology for fabricating, in PTR glasses, planar gradient waveguides with low losses (0.5 dB/cm) are demonstrated, the potentialities extending the application field of PTR glasses in photonics.
    Print ISSN: 0733-8724
    Electronic ISSN: 1558-2213
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...