ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-17
    Description: Distinct translational initiation mechanisms between prokaryotes and eukaryotes limit the exploitation of prokaryotic riboswitch repertoire for regulatory RNA circuit construction in mammalian application. Here, we explored programmed ribosomal frameshifting (PRF) as the regulatory gene expression platform for engineered ligand-responsive RNA devices in higher eukaryotes. Regulation was enabled by designed ligand-dependent conformational rearrangements of the two cis-acting RNA motifs of opposite activity in -1 PRF. Particularly, RNA elements responsive to trans-acting ligands can be tailored to modify co-translational RNA refolding dynamics of a hairpin upstream of frameshifting site to achieve reversible and adjustable -1 PRF attenuating activity. Combined with a ligand-responsive stimulator, synthetic RNA devices for synergetic translational-elongation control of gene expression can be constructed. Due to the similarity between co-transcriptional RNA hairpin folding and co-translational RNA hairpin refolding, the RNA-responsive ligand repertoire provided in prokaryotic systems thus becomes accessible to gene-regulatory circuit construction for synthetic biology application in mammalian cells.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...