ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-04
    Description: In contrast to ground-based solar-induced chlorophyll fluorescence (Fs) detection, the influence of atmospheric radiation transfer is the major difficulty in Fs retrieval from space. In this study, we first simulated top-of-atmosphere (TOA) radiance using FluorMODgui3.1 and MODTRAN5 code. Based on the simulated dataset, we analyzed the sensitivities of five potential Fs retrieval bands (Hα, K I, Fe, O2-A, and O2-B) to different atmospheric transfer parameters, including atmosphere profile, aerosol optical depth (AOD550), vertical water vapor column (H2O), vertical ozone column (O3), solar zenith angle (SZA), view zenith angle (VZA), relative azimuth angle (RAA) and elevation. The results demonstrate that the Hα, O2-A and O2-B bands are the most sensitive to these atmospheric parameters. However, only the O2-A and O2-B bands were found to be sensitive to the imaging geometric parameters. When the spectral resolution was sufficient, the K I and Fe bands proved to have the best potential for space-based Fs retrieval given the current available accuracies of atmospheric products, while the O2-A band was shown to perform better at lower spectral resolutions. The band sensitivity analysis presented here will be useful for band selection and atmospheric correction for space-based Fs retrieval.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...