ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-14
    Description: Motivated by the current controversy over the redshift distribution and physical properties of luminous (sub-)mm sources, we have undertaken a new study of the brightest sample of unlensed (sub-)mm sources with pre-Atacama Large Millimeter/submillimeter Array (ALMA) interferometric follow-up in the Cosmological Evolution Survey field. Exploiting the very latest multifrequency supporting data, we find that this sample displays a redshift distribution indistinguishable from that of the lensed sources uncovered with the South Pole Telescope, with z median ~= 3.5. We also find that, over the redshift range z ~= 2–6, the median stellar mass of the most luminous (sub-) mm sources is M * ~= 3 x 10 11 M , yielding a typical specific star formation rate sSFR ~= 3 Gyr – 1 . Consistent with recent ALMA and the Submillimeter Array studies, we confirm that source blending is not a serious issue in the study of luminous (sub-) mm sources uncovered by ground-based, single-dish surveys; only ~=10–15 per cent of bright ( S 850 ~= 5–10 mJy) (sub-) mm sources arise from significant (i.e. 〉20 per cent) blends, and so our conclusions are largely unaffected by whether we adopt the original single-dish mm/sub-mm flux densities/positions or the interferometric data. Our results suggest that apparent disagreements over the redshift distribution of (sub-)mm sources are a result of ‘down-sizing’ in dust-enshrouded star formation, consistent with existing knowledge of the star formation histories of massive galaxies. They also indicate that extreme star-forming galaxies at high redshift are, on average, subject to the same star formation rate-limiting processes as less luminous objects, and lie on the ‘main sequence’ of star-forming galaxies at z 〉 3.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...