ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-28
    Description: Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ~64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron density of the C-peptide. Here we show that SSB forms a monomer at pH 3.4, which is suitable for studies by high-resolution nuclear magnetic resonance (NMR) spectroscopy. The OB-domain retains its 3D structure in the monomer, and the C-peptide is shown by nuclear Overhauser effects and lanthanide-induced pseudocontact shifts to bind to the OB-domain at a site that harbors ssDNA in the crystal structure of the SSB–ssDNA complex. 15 N relaxation data demonstrate high flexibility of the polypeptide segment linking the C-peptide to the OB-domain and somewhat increased flexibility of the C-peptide compared with the OB-domain, suggesting that the C-peptide either retains high mobility in the bound state or is in a fast equilibrium with an unbound state.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...