ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-25
    Description: A thorough assessment of evapotranspiration (ET) pervades several important issues of the 21 st century including climate change, food-security, land-management, flood and drought prediction and water resources assessment and management. Such a proper assessment is of particular importance in the Ganga River Basin (GRB) with its backdrop of a rapidly increasing population pressure and unregulated use of water resources. Spatially averaged ET over the GRB is computed as the residual of atmospheric and terrestrial water budget computations using a combination of model simulations and satellite- and ground-based observations. The best estimate of monthly ET is obtained as the monthly mean of atmospheric and terrestrial water balance computations for the period 1980-2007. The mean monthly average of ET from these various estimates is 72.3 ± 18.8 mm month -1 . Monthly variations of ET peak between July and August and reach a minimum in February. For the entire study period, the rate of change of ET across the GRB is -11 mm yr -2 (i.e. mm/year/year). Alongside a notable influence of the 1997-1998 El Niño, results allude to the existence of interim periods during which ET trends varied significantly. More specifically, during the period of 1998-2002, the rate of decline increased to -55.8 mm yr -2 , which is almost 5-times the overall trend. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, we can infer that the ET over the GRB is primarily limited by moisture availability. The analysis has important potential for use in large-scale water budget assessments and intercomparison studies. The analysis also emphasizes the importance of synergistic use of mutli-platform hydrologic information.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...