ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-20
    Description: ABSTRACT Although mechanistic reaction networks have been developed to quantify the biogeochemical evolution of subsurface systems associated with bioremediation, it is difficult in practice to quantify the onset and distribution of these transitions at the field scale using commonly collected wellbore datasets. As an alternative approach to the mechanistic methods, we develop a data-driven, statistical model to identify biogeochemical transitions using various time-lapse aqueous geochemical data (e.g., Fe(II), sulfate, sulfide, acetate, and uranium concentrations) and induced polarization (IP) data. We assume that the biogeochemical transitions can be classified as several dominant states that correspond to redox transitions and test the method at a uranium-contaminated site. The relationships between the geophysical observations and geochemical time-series vary depending upon the unknown underlying redox status, which is modeled as a hidden Markov random field. We estimate unknown parameters by maximizing the joint likelihood function using the maximization-expectation algorithm. The case study results show that when considered together aqueous geochemical data and IP imaginary conductivity provide a key diagnostic signature of biogeochemical stages. The developed method provides useful information for evaluating the effectiveness of bioremediation, such as the probability of being in specific redox stages following biostimulation where desirable pathways (e.g., uranium removal) are more highly favored. The use of geophysical data in the approach advances the possibility of using non-invasive methods to monitor critical biogeochemical system stages and transitions remotely and over field relevant scales (e.g., from square meters to several hectares).
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...